
LOCAL ENERGY WEAK SOLUTIONS FOR THE
NAVIER-STOKES EQUATIONS AND APPLICATIONS

HIDEYUKI MIURA (TOKYO INSTITUTE OF TECHNOLOGY)

1. Introduction

This talk is based on a joint work with Yasunori Maekawa (Kyoto university)
and Christophe Prange (Université de Bordeaux, CNRS). We consider the
Navier-Stokes equations in the half-space

(1.1)

{
∂tu+ u · ∇u−∆u+∇p = 0, ∇ · u = 0 in (0, T )× R3

+,

u = 0 on (0, T )× ∂R3
+,

for divergence-free initial data. There is a long history about finite energy weak
solutions to (1.1) with initial data u0 ∈ L2

σ(Ω), where Ω can be for instance a
bounded domain, R3 or R3

+, which goes back to the seminal works of Leray [10]
and Hopf [5]. The study of weak solutions with infinite energy is much more
recent. It is interesting in its own right since one can study richer dynamics
generated by the solutions themselves and not driven by a source term. We are
interested in a special kind of infinite energy solutions, so-called local energy
weak solutions. For these solutions the energy is locally uniformly bounded.
This notion of solutions has been pioneered by Lemarié-Rieusset [9] in the whole
space R3, and later slightly extended by Kikuchi and Seregin [8]. Our goal is
to extend the notion of solution to the half-space R3

+ and to prove global in
time existence results. This answers an open problem mentioned by Barker and
Seregin in [1, Section 1].

The class of local energy weak solutions, which will be made precise in
Definition 2.1, is very useful, even for the study of finite energy weak solutions
to (1.1), so-called Leray-Hopf solutions, for at least three reasons. The first
reason is that they satisfy a local energy inequality. In particular, the solutions
are suitable in the sense of Caffarelli, Kohn and Nirenberg [2, 11], so that we can
apply ε-regularity theory to them. The second reason is that local energy weak
solutions appear as limits of rescaled solutions of the Navier-Stokes equations.
This is the case for instance when studying the local behavior of a Leray-Hopf
solution near a potential singularity. The energy being supercritical in 3D with
respect to the Navier-Stokes scaling uλ(y, s) = λu(λy, λ2s), the energy blows-up
when zooming. The limit object is still a solution of the Navier-Stokes system,
not in the finite energy class, but in the local energy class. Finally, the theory
of local energy solutions plays also an important role in the seminal work of
Jia and Šverák [6] about the construction of forward self-similar solutions with
large initial data. This work and the subsequent studies [7, 4] represent a big
progress toward understanding non-uniqueness of Leray-Hopf solutions.
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Combining the features of the local energy weak solutions emphasized in
the previous paragraph makes them powerful objects to study, for instance,
blow-up of scale-critical norms near potential singularities. In this way, Seregin
[13] was able to improve the celebrated result of Escauriaza, Seregin and Šverák
[3]. Seregin proved that: if a weak finite energy solution u to (1.1) in R3

has a first singularity at time T , in the sense that u is smooth in the time
interval (0, T ) and that the L∞ norm of u is infinite in any parabolic cylinder
B(x0, ρ)× (T − ρ2, T ), for fixed x0 ∈ R3 and any ρ > 0, then

‖u(·, t)‖L3(R3) −→∞ as t→ T − 0.

One of our objectives is to show that the solutions we construct make it possible
to prove the blow-up of the L3 norm in the case of the half-space R3

+ following
the scheme in [13]. Hence, we will recover the result of [1, Theorem 1.1] of the
blow-up of the L3,q norm 3 ≤ q <∞, in the case q = 3.

2. Definition of local energy weak solutions and main results

Let us first recall the definition of loc-uniform Lebesgue spaces: for 1 ≤ q ≤
∞,

Lquloc(R
d
+) :=

{
f ∈ L1

loc(Rd
+) | sup

η∈Zd−1×Z≥0

‖f‖Lq(η+(0,1)d) <∞

}
.

Let us define the space Lpuloc,σ(Rd
+) of solenoidal vector fields in Lquloc as follows:

Lquloc,σ(Rd
+) :=

{
f ∈ Lquloc(R

d
+)d |

ˆ
Rd
+

f · ∇ϕdx = 0 for any ϕ ∈ C∞0 (Rd
+)

}
.

For more properties of these spaces of locally uniformly p-integrable functions,
see [12] and the references cited therein.

Here we state the definition of local energy weak solutions to (1.1) when the
initial data belongs to

L2
uloc,σ(R3

+) := C∞c,σ
L2
uloc(R3

+).

We will actually be able to construct local energy weak solutions for data
in L2

uloc,σ(R3
+) locally in time. Nevertheless, the introduction of the space

L2
uloc,σ(R3

+) is useful since the solutions in this class decay at spatial infinity,
and hence, the parasitic solutions (the flows driven by the pressure with linear
growth) are automatically excluded in this class. Then we can state the
definition of solutions in a simple fashion compared with the solutions in the
class of nondecaying functions, where the structure of the pressure has to be
included in the definition of solutions.

Definition 2.1. Let T ∈ (0,∞] and QT := (0, T )×R3
+. A pair (u, p) is called a

local energy weak solution to (1.1) in QT with the initial data u0 ∈ L2
uloc,σ(R3

+)
if (u, p) satisfies the following conditions:
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(i) We have u ∈ L∞(0, T ;L2
uloc,σ(R3

+)) if T <∞, u ∈ L∞loc([0, T );L2
uloc,σ(R3

+)) if

T =∞ and p ∈ L
3
2
loc((0, T )× R3

+), and

sup
x∈R3

+

ˆ T ′

0

‖∇u‖2L2(B(x)∩R3
+)dt+ sup

x∈R3
+

(ˆ T ′

δ

‖∇p‖
3
2

L
9
8 (B(x)∩R3

+)
dt

) 2
3

<∞

for all finite T ′ ∈ (0, T ] and δ ∈ (0, T ′). Here B(x) is the ball of radius 1
centered at x.

(ii) The pair (u, p) satisfiesˆ T

0

−〈u, ∂tϕ〉L2(R3
+) + 〈∇u,∇ϕ〉L2(R3

+) − 〈p, divϕ〉L2(R3
+) + 〈u · ∇u, ϕ〉L2(R3

+) dt = 0

for any ϕ ∈ C∞c ((0, T )× R3
+)3 such that ϕ|x3=0 = 0.

(iii) The function t 7→ 〈u(t), w〉L2(R3
+) belongs to C([0, T )) for any compactly

supported w ∈ L2(R3
+)3. Moreover, for any compact set K ⊆ R3

+,

lim
t→0
‖u(t)− u0‖L2(K) = 0.

(iv) The pair (u, p) satisfies the local energy inequality: for any χ ∈ C∞c ((0, T )×
R3

+) and for a.e. t ∈ (0, T ),

‖(χu)(t)‖2L2(R3
+) + 2

ˆ t

0

‖χ∇u‖2L2(R3
+)ds

≤
ˆ t

0

〈|u|2, ∂sχ2 + ∆χ2〉L2(R3
+) + 〈u · ∇χ2, |u|2 + 2p〉L2(R3

+)ds.

The main result of our talk is stated as follows:

Theorem 2.2. For any u0 ∈ L2
uloc,σ(R3

+) there exists a local energy weak
solution (u, p) to (1.1) in Q∞ with initial data u0.

This result states the global in time existence of local energy weak solutions
in the sense of Definition 2.1. It is the analog for the half-space of the theorem
of Lemarié-Rieusset [9, Theorem 33.1] and of Kikuchi and Seregin [8, Theorem
1.5] for the whole space R3.

We next present an application of our result to a blow-up criteria in the half-
space. Recall that a point (x0, t) is called regular if u is bounded in a parabolic
ball B(x0, r)× (t− r2, t). If (x0, t) is not regular it is, by definition, singular.
We say that u blows-up at time T if T is the time of the first occurrence of a
singularity.

Corollary 2.3. Let u be a finite energy weak solution (i.e. a Leray-Hopf
solution) to the Navier-Stokes equations (1.1) with initial data u0 ∈ L2

σ(R3
+).

Assume that u blows-up at a finite time T > 0. Then

‖u(·, t)‖L3(R3
+) −→∞ as t→ T − 0.
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This result is not new. It has been initially proved by Barker and Seregin in
[1]. Our goal here is to give an alternative proof of this result, based on the
existence theory of local energy weak solutions developed in our present work.
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[6] H. Jia and V. Šverák. Local-in-space estimates near initial time for weak solutions of the
Navier-Stokes equations and forward self-similar solutions. Invent. Math., 196(1):233–265,
2014.
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