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This talk is mainly based on the joint work [11] with M. Sobajima and Y. Wakasugi.
We consider the Cauchy problem for the semilinear damped wave equation

(P )c(t,x)

{
utt −∆u+ c(t, x)ut = f(u) := |u|p, (t, x) ∈ R+ ×RN

(u, ut)(0, x) = ε(u0, u1)(x), x ∈ RN ,

where p > 1 and the support of (u0, u1) is compact with 0 < ε ≪ 1. When the coefficient c(t, x)
of damping is

(1) c(t, x) = a(x)b(t) := a0⟨x⟩−α(1 + t)−β, a0 > 0, ⟨x⟩ =
√

1 + |x|2, (α, β ∈ R),

our final aim is to obtain the critical exponent pc = pc(N,α, β) in the sense that, if p > pc, then
(P )c(t,x) has a global-in-time solution for small ε, and that, if p ≤ pc, then the local-in-time
solution blows up in a finite time for suitable data with any small ε.

When c ≡ 1 and f(u) ≡ 0, the solution u of our problem (P )c=1 has the diffusion phenomenon,
that is, the solution u behaves as the solution ϕ of corresponding parabolic problem

ϕt −∆ϕ = 0, ϕ(0, x) = ε(u0 + u1)(x)

(cf. Matsumura [8], Nishihara [10] etc.). In the result we can expect that the critical exponent
pc of (P )c=1 with f(u) = |u|p equals to the Fujita exponent pF (N) = 1 + 2

N , which is, in fact,
shown in Li-Zhou [5], Todorova-Yordanov [13], Zhang [16], Nishihara [10] etc.

We now consider (P )c(t,x) when c(t, x) is given in (1). By the scaling invariant method, we
can expect that, if α+β > 1, then the damping is non-effective (cf. [9, 15]) and pc is the Strauss
exponent, and that, if α + β < 1, then the damping is effective and pc is the variant of pF (N).
We mainly treat the case of effective damping. When the coefficient c(t, x) depends only on the
space x (β = 0), or time t (α = 0), then we already have several results;

For (P )c=⟨x⟩−α(0 ≤ α < 1), pc(N,α, 0) = 1 + 2
N−α (Ikehata-Todorova-Yordanov [4]),

For (P )c=(1+t)−β (−1 < β < 1), pc(N, 0, β) = 1 + 2
N (Lin-Nishihara-Zhai [7]).

Note that the case α = 1 or β = 1 is delicate and the case β < −1 changes the situation.
Though the small data global existence theorem is shown in [14, 6] etc. in the case α + β < 1
with α ≥ 0, β ≥ 0, the case α < 0 was not known. Also, note that pc(N, 0, β) is independent of
β. Thus, we treat the case α < 0 and α + β < 1. In fact, we obtain the following theorems in
Nishihara-Sobajima-Wakasugi [11].

Theorem 1 (Global-in-time solution). When α < 0, −1 < β < 1 or α < 0, β = 1 with a0 ≫ 1
in (1), if 1 + 2

N−α < p ≤ N
[N−2]+

, then for small data ε(u0, u1) ∈ H1 × L2, the Cauchy problem

(P)c(t,x) admits a unique global-in-time solution u ∈ C([0,∞);H1(RN )) ∩ C1([0,∞);L2(RN )).

Theorem 2 (Blow-up in finite time). Assume α < 0, β = 0 or α < 0, β = 1 in (1). Then, if

1 < p ≤ 1 +
2

N − α
and

∫
RN

[(a0⟨x⟩−α − β)u0(x) + u1(x)] dx > 0,
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then there is no global-in-time solution u ∈ C([0,∞);H1) ∩ C1([0,∞);L2) to (P)c(t,x).
Moreover, the life-span of the solution

Tε := sup{T ; the solutionu ∈ C([0, T );H1) ∩ C1([0, T );L2) to (P)c(t,x) exists}
is estimated from above as

Tε ≤

{
Cε

2−α
2(1+β)

( 1
p−1

−N−α
2

)−1

p < pc(N,α, 1)

eCε−(p−1)
p = pc(N,α, 1).

To the small data global existence in the supercritical exponent we apply the weighted energy
method, developed in [13] for the damped wave equations and new idea in [12], while, to the finite
time blow-up we apply the test function method, developed in [13, 16], and [2] for the estimate
of life-span. We remark that the critical exponent pc is completely shown to be pc(N,α, β) =
1 + 2

N−α when β = 0, α < 1 or β = 1, α < 0. When β ̸= 0 and β ̸= 1, the blow-up problem is
still open.
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