Complete extinction of solutions of a doubly nonlinear parabolic equation of fast diffusion type

Md Abu Hanif Sarkar", Masashi Misawa", and Kenta Nakamura[†]

["]Department of Mathematics, Kumamoto University, Kumamoto 860-8555, Japan ["]Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan [†]Graduate School of Mathematics, Kyushu University, Fukuoka 819-0395, Japan

Abstract

Let $\Omega \subset \mathbb{R}^n$ $(n \geq 3)$ be a bounded domain with smooth boundary $\partial\Omega$. For any positive $T \leq \infty$, let $\Omega_T := \Omega \times (0,T)$ be the space-time cylinder, and let $\partial_p \Omega_T$ be the parabolic boundary defined by $(\partial\Omega \times [0,T)) \cup (\Omega \times \{t=0\})$. Throughout the paper we fix $p \in [2,n)$ and q > p - 1. We consider the following doubly nonlinear parabolic equation

$$\begin{cases} \partial_t (u^q) - \Delta_p u = 0 & \text{in } \Omega_\infty \\ u = 0 & \text{on } \partial\Omega \times (0, \infty) \\ u(\cdot, 0) = u_0(\cdot) & \text{in } \Omega \end{cases}$$
(1)

Here the unknown function u = u(x,t) is a nonnegative real-valued function defined for $(x,t) \in \Omega_{\infty}$, and the initial data u_0 is assumed to be in the Sobolev space $W_0^{1,p}(\Omega)$, positive, bounded in Ω and $\Delta_p u := \operatorname{div} (|\nabla u|^{p-2} \nabla u)$ is the *p*-Laplacian.

In the case p = 2, the equation (1) becomes the so-called porous medium equation or the plasma equation. The global existence and continuity of a weak solution of (1) in the case p = 2 is proved in ([2],[3], [4]). In particular, the complete extinction at a finite time of a continuous weak solution is shown in [2]. In the paper [1], studied the positivity of weak solutions in a space region for a fixed time for the plasma type equation.

We treat the doubly nonlinear equation (1) with p-Laplacian and study the positivity, boundedness and finite extinction of a weak solution of (1). Our main assertion is the following :

Theorem 0.1. Theorem (finite time complete extinction) Let u_0 be positive, bounded and in $W_0^{1,p}(\Omega)$. Let u be a nonnegative, continuous weak solution of (1). Then there exists a positive $T < \infty$ such that T is the complete extinction time for (1), that is, u is positive in $\Omega \times [0,T)$ and u vanishes in $\Omega \times [T,\infty)$.

References

- Kwong, Ying C., Interior and boundary regularity of solutions to a plasma type equation, Proc. Amer. Math. Soc. 104 (1988), no. 2, 472–478.
- [2] Kuusi, T, Misawa, M., Nakamura, K., Regularity estimates for the p-Sobolev flow, J Geom Anal (2019) in press.
- [3] Nakamura, K., Misawa, M., Existence of weak solution to the p-Sobolev flow, Nonlinear Anal. 175(2018), 157-172.
- [4] Kuusi, T., Misawa, M., Nakamura, K., Global existence for the p-Sobolev flow, preprint.