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This talk is based on a joint work with Hideyuki Miura (Osaka university). We are
interested in the drift diffusion equations with the fractional Laplacian:

∂tθ + (−∆)
α
2 θ + v · ∇θ = 0, div v = 0, t > 0, x ∈ Rd, (1)

where d ≥ 2 and (−∆)α/2 is formally defined by(
−∆)

α
2 f(x) = P.V.

∫
Rd

f(x)− f(y)

|x− y|d+α
dy. (2)

Here α ∈ (0, 2) is a constant and v = v(t, x) is a given solenoidal vector field in Rd with
suitable regularity to be specified later. The equations of the form (1.1) appear in several
models in the fluid dynamics, where the solution describes some active scalar convected by
the incompressible flows.

In the case d = 2, if v and θ are related by v = (R2θ,−R1θ), the equation (1) is
called the dissipative quasi-geostrophic equation (QG) [4]. Here Ri (i = 1, 2) is the Riesz
transform. In particular, the case α = 1 is called critical in the sense that both the diffusion
term and the drift term become the leading terms of the equation. The global regularity
of the solution in the critical case is recently addressed in [7, 2, 6]. Due to the non-local
character of the fractional Laplacian, the usual local regularity theory does not work and
the nonsmooth drift term makes problems more delicate. Indeed, by maximum principle
and the boundedness of the Riesz transform Ri, it can be shown that v belongs to BMO,
However the critical case is the boaderline where the bootstrap argument can be performed
to obtain the regularity of the solution in view of the scaling.

In [2, 6] they regarded (QG) as the diffusion equation with a given drift term in BMO.
Motivated by these results, we study the existence and the regularity of fundamental solu-
tions of (1) under weak assumptions for v. Let 1 < q < ∞ and set

Xα =


L∞(0,∞;L

d
α−1 (Rd)) if α ∈ (1, 2),

L∞(0,∞;BMO(Rd)) ∩ Lq
loc(0,∞;L1

loc(Rd)) if α = 1,

L∞(0,∞; Ċ1−α(Rd)) ∩ Lq
loc(0,∞;L∞

loc(Rd)) if α ∈ (0, 1),

Y = L1(0,∞; Lip(Rd)) ∩ Lq
loc(0,∞;L∞

loc(Rd)).

Theorem. Let α ∈ (0, 2). Suppose that v belongs to either Xd
α or Y d. Then there exists

a fundamental solution Pα,v(t, x; s, y) for (1) satisfying the following properties.∫
Rd

Pα,v(t, x; s, y)dx =

∫
Rd

Pα,v(t, x; s, y)dy = 1, (3)

Pα,v(t, x; s, y) =

∫
Rd

Pα,v(t, x; τ, z)Pα,v(τ, z; s, y)dz, (4)

|Pα,v(t, x1; s, y1)− Pα,v(t, x2; s, y2)| ≤
C
(
|x1 − x2|β + |y1 − y2|β

)
(t− s)c

, (5)



and for T ≥ ti > si ≥ 0, i = 1, 2,

|Pα,v(t1, x; s1, y)− Pα,v(t2, x; s2, y)| ≤
CT,x|t1 − t2|β

′
+ CT,y|s1 − s2|β

′

(min{t1 − s1, t2 − s2})c′
. (6)

Moreover, if v ∈ Xd
α then

Pα,v(t, x; s, y) ≤ C(t− s)−
d
α

(
1 +

(
|x− y| − 2M [v](t, s, x, y)

)
+

(t− s)
1
α

)−d−α

, (7)

M [v](t, s, x, y) = sup
s<r<t

∣∣ ∫ r

s

AvgB|x−y|(x)
v(τ)dτ

∣∣. (8)

Even in the case v ∈ Y d, (7) holds if |t − s| ≪ 1 or ∥v∥L1(0,∞;Lip(Rd)) ≪ 1. The positive
constants C, c, c′, β, β′ are uniform in time and space, and the positive constant CT,x (or
CT,y) satisfies sup

|x|≤R

CT,x < ∞ (or sup|y|≤R CT,y < ∞) for each R > 0.

Remarks (i) When α ∈ (1, 2) and v belongs to a suitable Kato class without the condition
div v = 0, the fundamental solutions of (1) were constructed in [1, 5]. In this case the diffu-
sion term is the leading term and then perturbation arguments work. Under the divergence
free condition, our result relaxes the restriction of α and the regularity assumptions for v.
(ii) In order to construct fundamental solutions, it is essential to show the a priori bounds
related with the estimates in the theorem. To this end we will develop the Nash-type
arguments in [3, 8, 9] which studied the non-local diffusion equations without drift terms.
As in [10, 8, 9], the argument to derive the continuity estimates consists of four steps;
the moment bound, the relative entropy bound, the overlap estimate, and the iteration
estimate. However, due to the presence of the nonsmooth drift term, it is not easy to get
these estimates. Motivated by [2, 6], we estimate fundamental solutions in time-dependent
coordinates along the trajectory determined by a local average of v. Our method can be
adapted for more general non-local diffusion equations associated with certain Dirichlet
forms as in [8, 9].
(iii) The regularity assumption for v is invariant under the scaling v(t, x) 7→ λα−1v(λαt, λx),
which is compatible with the natural scaling of the equation (1).
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