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This talk is based on joint works with S. Cano-Casanova and J. López-Gómez [2, 3].

We deal with the dynamics of the parabolic quasilinear boundary value problem
∂tu−

(
u′√

1+κ(u′)2

)′

= λu, 0 < x < 1, t > 0,

u(0, t) = u(1, t) = 0, t > 0,

u(·, 0) = u0 > 0,

(1)

where λ ∈ R, κ > 0, u0 ∈ C[0, 1], and ′ stands for the spatial derivative

′ = D :=
∂

∂x
.

This problem establishes a quasilinear continuum deformation between the linear parabolic problem
∂tu−D2u = λu, 0 < x < 1, t > 0,

u(0, t) = u(1, t) = 0, t > 0,

u(·, 0) = u0 > 0,

(2)

and the problem (1), which is a parabolic problem associated to the one-dimensional mean curvature

operator. It is well known that the unique solution to (2) is given from the linear hear semigroup through

u(x, t;u0) = e(D
2+λ)tu0

and, consequently,

lim
t↑∞

u(x, t;u0) =

0, if λ < π2,

∞, if λ > π2,
for all x ∈ (0, 1),

whereas at λ = π2, the problem (2) possesses a straight half-line of positive steady-states, namely all

positive multiples of sin(πx).

Although the non-negative steady-states of (2) are given through the linear eigenvalue problem−u′′ = λu, 0 < x < 1,

u(0) = u(1) = 0,

the steady-states of (1) are given by the non-negative solutions to the quasilinear boundary value problem−
(

u′√
1+κ(u′)2

)′

= λu, 0 < x < 1,

u(0) = u(1) = 0.

(3)

The main results of this talk concerning the existence of positive solutions for (3) can be summarized in

the following list:
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• Problem (3) has a positive solution if and only if

8B2 < λ < π2, B :=

∫ 1

0

dθ√
θ−4 − 1

. (4)

• The positive solution to (3) is unique if it exists. Subsequently we denote it by uλ.

• uλ is symmetric around 1/2 for all λ satisfying (4).

• uλ satisfies

lim
λ↓8B2

u′
λ(0) = ∞, lim

λ↓8B2
∥uλ∥∞ =

1

2B
√
κ

and lim
λ↑π2

∥uλ∥∞ = 0. (5)

The bifurcation diagram can be written from the results above. Note that the interval of values of λ

for which (3) admits a positive solution does not depend on the value of κ > 0, though κ measures the

maximal size of all positive steady-states uλ through (5).

As we are dealing with a potential superlinear at infinity, due to Bonheure et al. [1], there exists λc > 0

such that for every λ ∈ (0, λc), (3) has a weak solution. On the other hand, according to the results

stated above, (3) cannot admit a positive classical solution for small λ > 0. Therefore, the weak solutions

of Bonheure et al. in [1] must be nonclassical for small λ > 0, i.e., they are regular in (0, 1) but present a

derivative blow-up at 0 and 1. These weak solutions seem to be bounded variation solutions as discussed

by Obersnel and Omari [6], and, hence [6] provides us with a multidimensional counterpart of [1].

Also recently, Mellet and Vovelle [5] have proven that if H > 0, then any weak solution to the perturbed

problem −
(

u′√
1+κ(u′)2

)′

= H + λf(u), 0 < x < 1

u(0) = 0, u(1) = 0,

must be classical. Consequently, in general, there is a huge difference between the general case whenH > 0

and the special case when H = 0, where the solutions cannot be classical for sufficiently small λ > 0. But,

rather naturally, the techniques from Mellet and Vovelle [5] can be adapted to prove that any solution to

(3) in the class Lip(0, 1) must be a classical solution. As a byproduct, weak solutions of Bonheure et al.

[1] for sufficiently small λ > 0 cannot lie in the class Lip(0, 1), whence |u′(0)| = |u′(1)| = ∞.

As far as concerns to the dynamics of (1), the main findings, in the most interesting case when the

condition (4) holds, can be shortly summarized as follows:

• For every λ ∈ (8B2, π2), uλ is linearly unstable, as a steady-state of (1). Moreover,

(a) If u0 < ηuλ for some 0 < η < 1, then

lim
t↑∞

u(x, t;u0) = 0 uniformly in [0, 1],

where u(x, t;u0) stands for the unique solution to (1).

(b) If u0 > ηuλ for some η > 1, then

lim
t↑∞

u(x, t;u0) = ∞ uniformly in every compact subset of (0, 1).

Considering also the other cases, we can get a rather complete panorama of the dynamics of (1). We

should also remark here that no matter how small the parameter λ > 0 is, the solutions to (1) can be

grown as much as we want by choosing the initial values u0 sufficiently large, as observed numerically by

Marcellini and Miller [4].



In this talk, we also consider the following parabolic quasilinear boundary value problem
∂tu−

(
u′√

1+κ(u′)2

)′

= λV (x)u, 0 < x < 1, t > 0,

u(0, t) = u(1, t) = 0, t > 0,

u(·, 0) = u0 > 0.

(6)

We note that the special case when V = 1 reduces to (1). The results for the problem (6) will be presented

in the talk. As a first difficulty, to study the classical steady-states of (6), which are the non-negative

classical solutions to the quasilinear elliptic problem−
(

u′√
1+κ(u′)2

)′

= λV (x)u, 0 < x < 1,

u(0) = u(1) = 0,

(7)

one cannot use phase portrait technique, as is done in the case V = 1. As a consequence of this handicap,

it remains an open problem to ascertain whether (7) admits a unique positive classical solution or not.
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