A quasilinear parabolic perturbation of the linear heat equation ${ }^{1}$

Kazuhiro Takimoto（Hiroshima University）${ }^{2}$

This talk is based on joint works with S．Cano－Casanova and J．López－Gómez［2，3］．
We deal with the dynamics of the parabolic quasilinear boundary value problem

$$
\begin{cases}\partial_{t} u-\left(\frac{u^{\prime}}{\sqrt{1+\kappa\left(u^{\prime}\right)^{2}}}\right)^{\prime}=\lambda u, & 0<x<1, t>0 \tag{1}\\ u(0, t)=u(1, t)=0, & t>0 \\ u(\cdot, 0)=u_{0}>0, & \end{cases}
$$

where $\lambda \in \mathbb{R}, \kappa>0, u_{0} \in C[0,1]$ ，and＇stands for the spatial derivative

$$
\prime=D:=\frac{\partial}{\partial x} .
$$

This problem establishes a quasilinear continuum deformation between the linear parabolic problem

$$
\begin{cases}\partial_{t} u-D^{2} u=\lambda u, & 0<x<1, t>0 \tag{2}\\ u(0, t)=u(1, t)=0, & t>0 \\ u(\cdot, 0)=u_{0}>0 & \end{cases}
$$

and the problem（1），which is a parabolic problem associated to the one－dimensional mean curvature operator．It is well known that the unique solution to（2）is given from the linear hear semigroup through

$$
u\left(x, t ; u_{0}\right)=e^{\left(D^{2}+\lambda\right) t} u_{0}
$$

and，consequently，

$$
\lim _{t \uparrow \infty} u\left(x, t ; u_{0}\right)=\left\{\begin{array}{ll}
0, & \text { if } \lambda<\pi^{2}, \\
\infty, & \text { if } \lambda>\pi^{2},
\end{array} \quad \text { for all } x \in(0,1),\right.
$$

whereas at $\lambda=\pi^{2}$ ，the problem（2）possesses a straight half－line of positive steady－states，namely all positive multiples of $\sin (\pi x)$ ．

Although the non－negative steady－states of（2）are given through the linear eigenvalue problem

$$
\left\{\begin{array}{l}
-u^{\prime \prime}=\lambda u, \quad 0<x<1 \\
u(0)=u(1)=0
\end{array}\right.
$$

the steady－states of（1）are given by the non－negative solutions to the quasilinear boundary value problem

$$
\left\{\begin{array}{l}
-\left(\frac{u^{\prime}}{\sqrt{1+\kappa\left(u^{\prime}\right)^{2}}}\right)^{\prime}=\lambda u, \quad 0<x<1 \tag{3}\\
u(0)=u(1)=0
\end{array}\right.
$$

The main results of this talk concerning the existence of positive solutions for（3）can be summarized in the following list：

[^0]- Problem (3) has a positive solution if and only if

$$
\begin{equation*}
8 B^{2}<\lambda<\pi^{2}, \quad B:=\int_{0}^{1} \frac{d \theta}{\sqrt{\theta^{-4}-1}} \tag{4}
\end{equation*}
$$

- The positive solution to (3) is unique if it exists. Subsequently we denote it by u_{λ}.
- u_{λ} is symmetric around $1 / 2$ for all λ satisfying (4).
- u_{λ} satisfies

$$
\begin{equation*}
\lim _{\lambda \downarrow 8 B^{2}} u_{\lambda}^{\prime}(0)=\infty, \quad \lim _{\lambda \downarrow 8 B^{2}}\left\|u_{\lambda}\right\|_{\infty}=\frac{1}{2 B \sqrt{\kappa}} \text { and } \lim _{\lambda \uparrow \pi^{2}}\left\|u_{\lambda}\right\|_{\infty}=0 . \tag{5}
\end{equation*}
$$

The bifurcation diagram can be written from the results above. Note that the interval of values of λ for which (3) admits a positive solution does not depend on the value of $\kappa>0$, though κ measures the maximal size of all positive steady-states u_{λ} through (5).

As we are dealing with a potential superlinear at infinity, due to Bonheure et al. [1], there exists $\lambda_{c}>0$ such that for every $\lambda \in\left(0, \lambda_{c}\right)$, (3) has a weak solution. On the other hand, according to the results stated above, (3) cannot admit a positive classical solution for small $\lambda>0$. Therefore, the weak solutions of Bonheure et al. in [1] must be nonclassical for small $\lambda>0$, i.e., they are regular in $(0,1)$ but present a derivative blow-up at 0 and 1. These weak solutions seem to be bounded variation solutions as discussed by Obersnel and Omari [6], and, hence [6] provides us with a multidimensional counterpart of [1].

Also recently, Mellet and Vovelle [5] have proven that if $H>0$, then any weak solution to the perturbed problem

$$
\left\{\begin{array}{l}
-\left(\frac{u^{\prime}}{\sqrt{1+\kappa\left(u^{\prime}\right)^{2}}}\right)^{\prime}=H+\lambda f(u), \quad 0<x<1 \\
u(0)=0, u(1)=0
\end{array}\right.
$$

must be classical. Consequently, in general, there is a huge difference between the general case when $H>0$ and the special case when $H=0$, where the solutions cannot be classical for sufficiently small $\lambda>0$. But, rather naturally, the techniques from Mellet and Vovelle [5] can be adapted to prove that any solution to (3) in the class $\operatorname{Lip}(0,1)$ must be a classical solution. As a byproduct, weak solutions of Bonheure et al. [1] for sufficiently small $\lambda>0$ cannot lie in the class $\operatorname{Lip}(0,1)$, whence $\left|u^{\prime}(0)\right|=\left|u^{\prime}(1)\right|=\infty$.

As far as concerns to the dynamics of (1), the main findings, in the most interesting case when the condition (4) holds, can be shortly summarized as follows:

- For every $\lambda \in\left(8 B^{2}, \pi^{2}\right), u_{\lambda}$ is linearly unstable, as a steady-state of (1). Moreover,
(a) If $u_{0}<\eta u_{\lambda}$ for some $0<\eta<1$, then

$$
\lim _{t \uparrow \infty} u\left(x, t ; u_{0}\right)=0 \quad \text { uniformly in }[0,1],
$$

where $u\left(x, t ; u_{0}\right)$ stands for the unique solution to (1).
(b) If $u_{0}>\eta u_{\lambda}$ for some $\eta>1$, then

$$
\lim _{t \uparrow \infty} u\left(x, t ; u_{0}\right)=\infty \quad \text { uniformly in every compact subset of }(0,1)
$$

Considering also the other cases, we can get a rather complete panorama of the dynamics of (1). We should also remark here that no matter how small the parameter $\lambda>0$ is, the solutions to (1) can be grown as much as we want by choosing the initial values u_{0} sufficiently large, as observed numerically by Marcellini and Miller [4].

In this talk, we also consider the following parabolic quasilinear boundary value problem

$$
\begin{cases}\partial_{t} u-\left(\frac{u^{\prime}}{\sqrt{1+\kappa\left(u^{\prime}\right)^{2}}}\right)^{\prime}=\lambda V(x) u, & 0<x<1, t>0 \tag{6}\\ u(0, t)=u(1, t)=0, & t>0 \\ u(\cdot, 0)=u_{0}>0 & \end{cases}
$$

We note that the special case when $V=1$ reduces to (1). The results for the problem (6) will be presented in the talk. As a first difficulty, to study the classical steady-states of (6), which are the non-negative classical solutions to the quasilinear elliptic problem

$$
\left\{\begin{array}{l}
-\left(\frac{u^{\prime}}{\sqrt{1+\kappa\left(u^{\prime}\right)^{2}}}\right)^{\prime}=\lambda V(x) u, \quad 0<x<1, \tag{7}\\
u(0)=u(1)=0
\end{array}\right.
$$

one cannot use phase portrait technique, as is done in the case $V=1$. As a consequence of this handicap, it remains an open problem to ascertain whether (7) admits a unique positive classical solution or not.

References

[1] D. Bonheure, P. Habets, F. Obersnel and P. Omari, Classical and non-classical solutions of a prescribed curvature equation, J. Differential Equations 243 (2007), 208-237.
[2] S. Cano-Casanova, J. López-Gómez and K. Takimoto, A quasilinear parabolic perturbation of the linear heat equation, J. Differential Equations 252 (2012), 323-343.
[3] S. Cano-Casanova, J. López-Gómez and K. Takimoto, A weighted quasilinear equation related to the mean curvature operator, Nonlinear Anal. TMA 75 (2012), 5905-5923.
[4] P. Marcellini and K. Miller, Elliptic versus parabolic regularization for the equation of prescribed mean curvature, J. Differential Equations 137 (1997), 1-53.
[5] A Mellet and J. Vovelle, Existence and regularity of extremal solutions for a mean-curvature equation, J. Differential Equations 249 (2010), 37-75.
[6] F. Obersnel and P. Omari, Positive solutions of the Dirichlet problem for the prescribed curvature equation, J. Differential Equations 249 (2010), 1674-1725.

[^0]: 1「熊本大学応用解析セミナー」アブストラクト，平成 25 年 1 月 26 日
 ${ }^{2}$ E－mail ：takimoto＠math．sci．hiroshima－u．ac．jp

