A quasilinear parabolic perturbation
of the linear heat equation:
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This talk is based on joint works with S. Cano-Casanova and J. Lépez-Gdémez [2, 3.

We deal with the dynamics of the parabolic quasilinear boundary value problem

!/
3tu(\/1+zw) :>\U, 0<I<1,t>0,
w(0,t) = u(1,t) = 0, t>0, (1)
u(-,0) =ug >0,

where A € R, k > 0, ug € C[0, 1], and ’ stands for the spatial derivative
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This problem establishes a quasilinear continuum deformation between the linear parabolic problem

Oy — D?u = \u, O<z<l1, t>0,
u(0,t) =u(1,t) =0, t>0, (2)
U(,O) =up > 0,

and the problem (1), which is a parabolic problem associated to the one-dimensional mean curvature

operator. It is well known that the unique solution to (2) is given from the linear hear semigroup through

u(x, t;ug) = e(D* Nty
and, consequently,
, 0, if\<n?,
lim u(x, t;ug) = for all x € (0,1),
ttoo 00, if A > 72,

whereas at A = 72, the problem (2) possesses a straight half-line of positive steady-states, namely all
positive multiples of sin(7x).

Although the non-negative steady-states of (2) are given through the linear eigenvalue problem

—u" = Au, 0<z<l,
u(0) =wu(l) =0,

the steady-states of (1) are given by the non-negative solutions to the quasilinear boundary value problem
!
S — =, O0<ax<l,
( 1+/<;(u’)2> (3)
u(0) = u(1) = 0.

The main results of this talk concerning the existence of positive solutions for (3) can be summarized in

the following list:
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Problem (3) has a positive solution if and only if

8B% < \ < 72,
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The positive solution to (3) is unique if it exists. Subsequently we denote it by uy.

e u) is symmetric around 1/2 for all A satisfying (4).

u) satisfies

lim v\ (0) =00, lim |lux|leo

1
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The bifurcation diagram can be written from the results above. Note that the interval of values of A
for which (3) admits a positive solution does not depend on the value of £ > 0, though x measures the
maximal size of all positive steady-states uy through (5).

As we are dealing with a potential superlinear at infinity, due to Bonheure et al. [1], there exists A, > 0
such that for every A € (0,.), (3) has a weak solution. On the other hand, according to the results
stated above, (3) cannot admit a positive classical solution for small A > 0. Therefore, the weak solutions
of Bonheure et al. in [1] must be nonclassical for small A > 0, i.e., they are regular in (0, 1) but present a
derivative blow-up at 0 and 1. These weak solutions seem to be bounded variation solutions as discussed
by Obersnel and Omari [6], and, hence [6] provides us with a multidimensional counterpart of [1].

Also recently, Mellet and Vovelle [5] have proven that if H > 0, then any weak solution to the perturbed

problem

’

/
—(W) =H+Af(u), 0<z<1
u(0) =0, u(l) =0,
must be classical. Consequently, in general, there is a huge difference between the general case when H > 0
and the special case when H = 0, where the solutions cannot be classical for sufficiently small A > 0. But,
rather naturally, the techniques from Mellet and Vovelle [5] can be adapted to prove that any solution to
(3) in the class Lip(0, 1) must be a classical solution. As a byproduct, weak solutions of Bonheure et al.

[1] for sufficiently small A > 0 cannot lie in the class Lip(0, 1), whence |u/(0)| = |«/(1)| = cc.

As far as concerns to the dynamics of (1), the main findings, in the most interesting case when the

condition (4) holds, can be shortly summarized as follows:
e For every \ € (8B2,72), uy is linearly unstable, as a steady-state of (1). Moreover,

(a) If up < nuy for some 0 < n < 1, then

tliTm u(z,t;up) =0 uniformly in [0, 1],

where u(z, t;up) stands for the unique solution to (1).

(b) If ug > nuy for some n > 1, then

liTm u(z,t;up) = oo uniformly in every compact subset of (0, 1).

tToo

Considering also the other cases, we can get a rather complete panorama of the dynamics of (1). We
should also remark here that no matter how small the parameter A > 0 is, the solutions to (1) can be
grown as much as we want by choosing the initial values ug sufficiently large, as observed numerically by
Marcellini and Miller [4].



In this talk, we also consider the following parabolic quasilinear boundary value problem
/ /
Owu — (m) =AV(x)u, 0<z<1,t>0,
w(0,8) = u(1,t) = 0, t>0, (6)
u(-,0) = ug > 0.
We note that the special case when V' = 1 reduces to (1). The results for the problem (6) will be presented
in the talk. As a first difficulty, to study the classical steady-states of (6), which are the non-negative

classical solutions to the quasilinear elliptic problem

_ (14:;(1/)2) =AV(z)u, 0<z<1, 7)
u(0) = u(1) =0,

one cannot use phase portrait technique, as is done in the case V = 1. As a consequence of this handicap,

it remains an open problem to ascertain whether (7) admits a unique positive classical solution or not.
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