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We consider local and global energy solutions for the Cauchy problem of non-

linear Klein-Gordon equations in de Sitter spacetime. Let n ≥ 1, M > 0, H > 0,

c > 0, and let us consider the Cauchy problem given by
(∂2

t − c2e−2Ht∆+M2)u(t, x) + c2enHt/2f(e−nHt/2u(t, x)) = 0

for (t, x) ∈ [0, T )× Rn

u(0, ·) = u0(·) ∈ H1(Rn), ∂tu(0, ·) = u1(·) ∈ L2(Rn),

(0.1)

where u0, u1, f are real-valued functions, ∆ :=
∑n

j=1 ∂
2/∂x2j , H

1(Rn) denotes the

Sobolev space and L2(Rn) denotes the Lebesgue space. The spatial expansion of the

de Sitter metric yields the dissipative effect to the Klein-Gordon equation.

D’Ancona and Giuseppe have shown in [5] and [6] global classical solutions for

(∂2
t −a(t)∆)u+ |u|p−1u = 0 with some additional conditions on a(t) ≥ 0 and p when

n = 1, 2, 3. Yagdjian has shown in [18] small global solutions for the first equation

in (0.1) when the nonlinear term f is a power type of f(u) = ±|u|p−1u or ±|u|p,
1 < p < ∞, and the norm of initial data ∥u0∥Hs(Rn)+∥u1∥Hs(Rn) is sufficiently small

for some s > n/2 ≥ 1 (see also [19] for the system of the equations). Baskin has

shown in [3] small global solution for (�g + λ)u + f(u) = 0 when f(u) is a type

of |u|p−1u, p = 1 + 4/(n − 1), λ > n2/4, (u0, u1) ∈ H1 ⊕ L2, where g gives the

asymptotic de Sitter spacetime (see also [2] for the cases p = 5 with n = 3, p = 3

with n = 4). Blow-up phenomena are considered in [17]. See also the references in

the summary [20] by Yagdjian. The aim of this paper is to give the fundamental

theory for the well-posedness of the Cauchy problem (0.1) with power type nonlinear

terms in the energy space, and we also consider exponential type nonlinear terms

for the limiting case in terms of Sobolev embeddings in two spatial dimensions.

To denote power type nonlinear terms of order p, we define the following set

N(p). We note that the nonlinear terms f(u) = λ|u|p−1u and f(u) = λ|u|p for

λ ∈ R satisfy f ∈ N(p).

Definition 0.1 Let p ≥ 1. We denote by N(p) the set of functions f from R to R
which satisfies f(0) = 0 and

|f(u)− f(v)| ≤ C max
w=u,v

|w|p−1|u− v| (0.2)

for any u and v ∈ R, where C > 0 is a constant independent of u and v.

For T > 0, we define a function space X(T ) := {u : ∥u∥X(T ) < ∞}, where

∥u∥X(T ) := max{M∥u∥L∞((0,T ),L2(Rn)), ∥∂tu∥L∞((0,T ),L2(Rn)),

c∥e−Ht∇u∥L∞((0,T ),L2(Rn)), c
√
H∥e−Ht∇u∥L2((0,T )×Rn))}. (0.3)

We start from the Cauchy problem for power type nonlinear terms.
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Theorem 0.2 Let p satisfy

1 ≤ p

{
< ∞ if n = 1, 2

≤ 1 + 2
n−2 if n ≥ 3.

(0.4)

Let f ∈ N(p). Then we have the following results.

(1) For any u0 and u1, there exists T = T (∥u0∥H1(Rn) + ∥u1∥L2(Rn)) > 0 such

that (0.1) has a unique solution u in C([0, T ),H1(Rn)) ∩ C1([0, T ), L2(Rn)). Here,

u satisfies u ∈ X(T ), and for any fixed p0 with 1 ≤ p0 < 1 + 4/n, there exists a

constant C > 0 dependent on p0 but independent of u0 and u1 such that T can be

estimated from below as

T ≥ C{∥u0∥H1(Rn) + ∥u1∥L2(Rn)}−(p−1)/{1−n(p0−1)/4}. (0.5)

(2) If ∥u0∥H1(Rn) + ∥u1∥L2(Rn) is sufficiently small, and 1 + 4/n ≤ p, then (0.1)

has a unique solution u in C([0, T ),H1(Rn)) ∩ C1([0, T ), L2(Rn)). And u satisfies

u ∈ X(∞).

We use the following Gagliardo-Nirenberg interpolation inequality with asymp-

totic (see [10, Corollary 1.6], [11, Theorem 1.1] and the references therein) to consider

exponential nonlinear terms.

Lemma 0.3 Let n = 1, 2. There exist β > 0 and q0 ≥ 2 such that

∥u∥Lq(Rn) ≤ βq1/2∥∇u∥n(1/2−1/q)
L2(Rn)

∥u∥1−n(1/2−1/q)
L2(Rn)

(0.6)

for any q with q0 ≤ q < ∞ and nonconstant u. Here, β can be taken for any number

with β > (8πe)−1/2 when n = 2.

The exponential nonlinear terms have been considered for Schrödinger equations in

[4, 13], wave equations in [7, 14], Klein-Gordon equations in [9, 15], heat equations

in [8], complex Ginzburg-Landau equations and dissipative wave equations in [12],

damped Klein-Gordon equations in [1]. We show the corresponding result for Klein-

Gordon equations in de Sitter spacetime.

Theorem 0.4 Let n = 1, 2. Let λ ∈ R, α > 0, 0 < ν ≤ 2, j0 ≥ 0. Let f(u) =

λu(eα|u|
ν −

∑
0≤j<j0

αj

j! |u|
νj) for j0 ≥ 1, and f(u) = λueα|u|

ν
for j0 = 0. Put

D := ∥u0∥H1(Rn) + ∥u1∥L2(Rn). Then we have the following results.

(1) Let ν < 2. For any u0 and u1, there exists T > 0 such that (0.1) has

a unique time local solution u in C([0, T ),H1(R2)) ∩ C1([0, T ), L2(R2)). Here, u

satisfies u ∈ X(T ), and for any fixed p0 with j0 ≥ (p0 − 1)/ν and 1 ≤ p0 < 1 + 4/n,

there exists a constant C0 independent of D such that T can be estimated from below

as

T ≥

2C0

∑
j≥j0

p(j)a(j)(2C0D)p(j)−1

−1/{1−n(p0−1)/4}

, (0.7)

where p(j) := νj + 1, a(j) := αjβp(j)(2p(j))p(j)/2/j!, and β is any real number by

which Lemma 0.3 holds.

(2) If 4/nν ≤ j0 and D is sufficiently small, then (0.1) has a unique time global

solution u in C([0,∞),H1(R2)) ∩ C1([0,∞), L2(R2)). And u satisfies u ∈ X(∞).
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We have considered the existence of solutions so far. Our solutions have the

continuous dependence on the initial data, and they have asymptotic profiles to free

solutions as follows.

Theorem 0.5 Let u be the solution obtained in the above theorems for initial data

u0 and u1, and let 0 < T ≤ ∞ be the existence time of u there.

(1) Let v0 ∈ H1(Rn) and v1 ∈ L2(Rn), and let v be the solution obtained in the

above theorems for initial data v0 and v1. If v0 converges to u0 in H1(Rn), and v1
converges to u1 in L2(Rn), then ∥u− v∥X(T ) tends to zero.

(2) If u is the time global solution given by (2) of Theorem 0.2 and Theorem 0.4,

then there exist v0 ∈ L2(Rn) and v1 ∈ H−1(Rn) such that

lim
t→∞

{e−Ht∥u(t)− v(t)∥L2(Rn) + ∥∂tu(t)− ∂tv(t)∥H−1(Rn)} = 0, (0.8)

where v is the free solution of (∂2
t −c2e−2Ht∆+M2)v = 0, v(0, ·) = v0(·), ∂tv(0, ·) =

v1(·).

Finally, we consider global solutions for large data when the nonlinear term f in

(0.1) has an energy conservative potential function.

Theorem 0.6 Let λ ≥ 0. Let u0 ∈ H1(Rn) and u1 ∈ L2(Rn). Let f(u) be given by

the following (1) or (2).

(1) We put f(u) = λ|u|p−1u, where p satisfies

1 ≤ p

{
< ∞ if n = 1, 2

≤ 1 + 2
n−2 if n ≥ 3.

(0.9)

(2) Let n = 2, 0 < α < ∞, 0 < ν ≤ 2, 0 ≤ j0 < ∞. Let f(u) = λu(eα|u|
ν −∑

0≤j<j0
αj

j! |u|
νj) for j0 ≥ 1, and f(u) = λueα|u|

ν
for j0 = 0. When ν = 2, we

assume

1

2

∫
R2

c2|∇u0(x)|2 +M2u20(x) + |u1(x)|2

+ c2λ
∞∑

j≥j0

αj

j!2(j + 1)
|u0|2(j+1)dx ≤ c2π

α
. (0.10)

Then (0.1) has a unique global solution u in C([0,∞), H1(Rn))∩C1([0,∞), L2(Rn)).

And u satisfies u ∈ X(∞).
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Poincaré 14 (2013), Issue 2, pp 221–252

[4] J. Colliander, S. Ibrahim, M. Majdoub, N. Masmoudi, Energy critical NLS in two

space dimensions, J. Hyperbolic Differ. Equ. 6 (2009), no. 3, 549–575.

[5] P. D’Ancona, A note on a theorem of Jörgens, Math. Z. 218 (1995), no. 2, 239–252.

[6] P. D’Ancona, A. Di Giuseppe, Global existence with large data for a nonlinear weakly

hyperbolic equation, Math. Nachr. 231 (2001), 5–23.

[7] S. Ibrahim, R. Jrad, Strichartz type estimates and the well-posedness of an energy

critical 2D wave equation in a bounded domain, J. Differential Equations 250 (2011),

no. 9, 3740–3771.

[8] S. Ibrahim, R. Jrad, M. Majdoub, T. Saanouni, Well posedness and unconditional non

uniqueness for a 2D semilinear heat equation, preprint.

[9] S. Ibrahim, M. Majdoub, N. Masmoudi, Global solutions for a semilinear, two-

dimensional Klein-Gordon equation with exponential-type nonlinearity, Comm. Pure

Appl. Math. 59 (2006), no. 11, 1639–1658.

[10] M. Ishiwata, M. Nakamura, H. Wadade, On the sharp constant for the weighted

Trudinger-Moser type inequality of the scaling invariant form, preprint.

[11] S. Nagayasu, H. Wadade, Characterization of the critical Sobolev space on the optimal

singularity at the origin, J. Funct. Anal. 258 (2010), no. 11, 3725–3757.

[12] M. Nakamura, Small global solutions for nonlinear complex Ginzburg-Landau equations

and nonlinear dissipative wave equations in Sobolev spaces, Reviews in Mathematical

Physics 23 (2011), No. 8, 903–931.

[13] M. Nakamura, T. Ozawa, Nonlinear Schrödinger equations in the Sobolev space of

critical order, J. Funct. Anal. 150 (1998), 364–380.

[14] M. Nakamura, T. Ozawa, Global solutions in the critical Sobolev space for the wave

equations with nonlinearity of exponential growth, Math. Z. 231 (1999), 479–487.

[15] M. Nakamura, T. Ozawa, The Cauchy problem for nonlinear Klein–Gordon equations

in the Sobolev spaces, Publications of R.I.M.S., Kyoto University 37 (2001), 255–293.

[16] R. S. Strichartz, A note on Trudinger’s extension of Sobolev’s inequalities, Indiana

Univ. Math. J. 21 (1971/72), 841–842.

[17] K. Yagdjian, The semilinear Klein-Gordon equation in de Sitter spacetime, Discrete

Contin. Dyn. Syst. Ser. S 2 (2009), no. 3, 679–696.

[18] K. Yagdjian, Global existence of the scalar field in de Sitter spacetime, J. Math. Anal.

Appl. 396 (2012), no. 1, 323–344.

[19] K. Yagdjian, Global solutions of semilinear system of Klein-Gordon equations in de

Sitter spacetime, preprint.

[20] K. Yagdjian, Semilinear hyperbolic equations in curved spacetime, preprint.

4


