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1. Introduction

Let D be a domain inRn, n ≥ 2. Let pD(t, x, y), t > 0, x, y ∈ D, be the heat kernel for∆−∂/∂t
on D, i.e.,u(t, x) =

∫
D

pD(t, x, y) f (y)dy is the solution to

∆u− ∂u
∂t
= 0 on (0,∞) × D,

u = 0 on (0,∞) × ∂D,

u = f on {0} × D.

Definition 1.1 (Davies-Simon [DS84]). We say thatD intrinsically ultracontractive(abbrevi-
ated to IU) if the following two conditions are satisfied:

(i) The eigenvalue problem−∆u = λu in D subject to the Dirichlet boundary condition
u = 0 on∂D has the first eigenvalueλD > 0 with corresponding positive eigenfunction
φD normalized by∥φD∥2 = 1.

(ii) For everyt > 0, there exist constants 0< ct < 1 < Ct depending ont such that

(1.1) ctφD(x)φD(y) ≤ pD(t, x, y) ≤ CtφD(x)φD(y) for all x, y ∈ D.

Remark1.2. We can replace (i) by

(i’) The Dirichlet Laplacian−∆ has no essential spectrum; and hence the heat kernel
pD(t, x, y) has eigenfunction expansion

pD(t, x, y) =
∞∑
j=0

e−λ j tφ j(x)φ j(y),

whereλ0 < λ1 ≤ λ2 ≤ · · · andφ0, φ1, φ2, . . . are eigenvalues and eigenfunctions. Here
λD = λ0 andφD = φ0 for notational convenience.

See [Dav89] for further details.

We shall see that (i’) is completely characterized bycapacitary width. Roughly speaking, if
D is smallat infinity, then (i’) holds. On the other hand, (ii) is asmoothnesscondition onD. It
is global, very mild and subtle and has been fascinating a number of mathematicians. This is
our main objective.

This introduction provides several known results to increase the reader’s familiarity with IU.
First, we observe that if the upper estimate of (1.1) holds at some time, sayt0, then so does it
aftert0 with exponentially decaying constantCt.

Proposition 1.3. Suppose pD(t0, x, y) ≤ Ct0φD(x)φD(y) for all x, y ∈ D with some t0 > 0. If
t ≥ t0, then

pD(t, x, y) ≤ Ct0e
−λD(t−t0)φD(x)φD(y) for all x, y ∈ D.

In other words, pD(t, x, y) ≤ CtφD(x)φD(y) holds with Ct ≤ Ct0e
−λD(t−t0) for t ≥ t0.
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Proof. Fix y ∈ D. It is easy to see that the functionu(t, x) = Ct0e
−λD(t−t0)φD(x)φD(y) is a caloric

function with vanishing lateral boundary values. By assumptionpD(t0, x, y) ≤ u(t0, x) for x ∈ D.
Hence the comparison principle on (t0,∞) × D yields the required inequality. □

This simple observation of IU readily yields the Cranston-McConnell inequality, or the life-
time estimate.

Proposition 1.4 (Cranston-McConnell inequality). If u is a nonnegative superharmonic func-
tion in D, then

(CM)
1

u(x)

∫
D

G(x, y)u(y)dy≤ A.

In the probabilistic language, Eux(τD) ≤ A, whereτD is the first exit time of the Brownian motion
and Eu

x(τD) is the Doob’s u-conditioned expectation with respect to Brownian motion starting
from x.

Proof. ObserveG(x, y) =
∫ ∞

0
pD(t, x, y)dt. Regardingu(x) as a time-invariant caloric function,

we obtain from the comparison principle that∫
D

pD(t, x, y)u(y)dy≤ u(x) for everyt > 0.

Let t0 > 0. We have∫ t0

0
dt
∫

D
pD(t, x, y)u(y)dy≤

∫ t0

0
u(x)dt = t0u(x),(1.2)

u(x) ≥
∫

D
pD(t0, x, y)u(y)dy≥

∫
D

ct0φD(x)φD(y)u(y)dy(1.3)

by the lower estimate of (1.1). Hence Proposition1.3and (1.3) yield∫ ∞

t0

dt
∫

D
pD(t, x, y)u(y)dy≤

∫ ∞

t0

dt
∫

D
Ct0e

−λD(t−t0)φD(x)φD(y)u(y)dy

≤ Ct0

ct0

∫ ∞

t0

dt
∫

D
e−λD(t−t0) pD(t0, x, y)u(y)dy≤ A

λD
u(x).

Adding this inequality and (1.2), we obtain the Cranston-McConnell inequality. □

Remark1.5. Cranston-McConnell [CM83] proved (CM) for a planar domain of finite area with
A being a multiple of the area ofD. Their result is remarkable since no regularity ofD is needed.
In the higher dimensional case, there exists a bounded domain (and hence of finite volume) for
which (CM) fails. It is also known that there exists a planar domain of infinite area for which
(CM) holds.

The eigenfunction expansion of the heat kernel yields very precise estimates for larget > 0.
In particular, we see that the upper estimate of (1.1) automatically implies the lower estimate.
In the following lemma, we writeλ0 andφ0 for λD andφD, respectively for the notational
convenience.

Proposition 1.6. Letλ0 < λ1 ≤ λ2 ≤ · · · be eigenvalues for−∆u = 0 in D and u= 0 on∂D and
let φ0, φ1, φ2, . . . be corresponding eigenfunctions normalized∥φ j∥2 = 1. Moreover letφ0 > 0
on D.
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(i) pD(t, x, y) =
∞∑
j=0

e−λ j tφ j(x)φ j(y).

(ii)
∞∑
j=0

e−λ j t ≤ At0e
−λ1(t−t0) for t ≥ t0 with At0 =

∫
D

pD(t0, x, x)dx.

Moreover, if pD(t0, x, x) ≤ ct0φ0(x)2 for every x∈ D (in particular, if D is IU), then the following
hold:

(iii)
∣∣∣∣φ j(x)

φ0(x)

∣∣∣∣2 ≤ ct0e
λ j t0 for j = 1, 2, . . . .

(iv)
∣∣∣∣eλ0t pD(t, x, y)
φ0(x)φ0(y)

− 1
∣∣∣∣ ≤ Ct0e

−(λ1−λ0)t for t ≥ 3t0.

(v) For eachε > 0 there exists t(ε) > 0 such that

(1− ε)e−λ0tφ0(x)φ0(y) ≤ pD(t, x, y) ≤ (1+ ε)e−λ0tφ0(x)φ0(y) for t ≥ t(ε).

Proof. We have (i) by an eigenfunction expansion. Ift ≥ t0, then by (i)

At0 =

∫
pD(t0, x, x)dx=

∫ ∞∑
j=0

e−λ j t0φ j(x)2dx=
∞∑
j=0

e−λ j t0 ≥
∞∑
j=1

eλ j (t−t0)−λ j t ≥ eλ1(t−t0)
∞∑
j=1

e−λ j t,

which shows (ii). Now supposepD(t0, x, x) ≤ ct0φ0(x)2. Then, by (i),

ct0φ0(x)2 ≥ pD(t0, x, x) =
∞∑
j=0

e−λ j t0φ j(x)2 ≥ e−λ j t0φ j(x)2,

which gives (iii). Observe from (i) that

eλ0t pD(t, x, y)
φ0(x)φ0(y)

− 1 =
∞∑
j=1

e(λ0−λ j )t
φ j(x)φ j(y)

φ0(x)φ0(y)
.

If t ≥ t0, then, from (iii), the right hand side is bounded in modulus by

∞∑
j=1

e(λ0−λ j )tct0e
λ j t0 = ct0e

λ0t
∞∑
j=1

e−λ j (t−t0)/2e−λ j (t−t0)/2 ≤ ct0e
λ0te−λ1(t−t0)/2

∞∑
j=1

e−λ j (t−t0)/2.

By (ii) the last summation is not greater thanAt0e
−λ1[(t−t0)/2−t0] if ( t − t0)/2 ≥ t0, i.e., t ≥ 3t0.

These observations altogether yield∣∣∣∣eλ0t pD(t, x, y)
φ0(x)φ0(y)

− 1
∣∣∣∣ ≤ ct0At0e

λ0teλ1t0e−λ1(t−t0) = ct0At0e
2λ1t0e−(λ1−λ0)t,

which shows (iv). It follows from (iv) that
eλ0t pD(t, x, y)
φ0(x)φ0(y)

= 1 + o(1) ast → ∞, which readily

implies (v). □

2. Main results

Let us now state our results. See [Aik ] for details.
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2.1. General sufficiency with Green function.

Definition 2.1. Let 0< η < 1. For an open setD we define thecapacitary width wη(D) by

wη(D) = inf
{
r > 0 :

CapB(x,2r)(B(x, r) \ D)

CapB(x,2r)(B(x, r))
≥ η for all x ∈ D

}
.

Theorem 2.2.The first eigenvalueλD satisfies

A−1

wη(D)2
≤ λD ≤

A
wη(D)2

,

where A> 1 depends only onη and n. In particular, there is no essential spectrum of−∆ if and
only if limR→∞wη(D \ B(0,R)) = 0.

Remark2.3. The first eigenvalue, or the principal frequency, is a fascinating subject drawing
a lot of attention. For instance, the relationship between the principal frequency and the vol-
ume is known as the Faber-Krahn inequality. In the complex analysis, it is estimated by the
inradius for a simply connected domain. Very precise estimates are known under geometrical
assumptions onD. The above estimate holds for arbitrary domains. Surprisingly enough, such
an estimate has not known until Maz’ya-Shubin [MS05] proved the essentially same inequality
with a different quantity (the dual ofwη(D)). We prove the theorem by a rather easy parabolic
argument, inspired by Souplet [Sou00].

We proved the scale-invariant boundary Harnack principle, or local boundary Harnack prin-
ciple (LBHP) for a uniform domain in [Aik01]. The following estimate of harmonic measure
played a crucial role.

Proposition 2.4. Byωx(E,D) we denote the harmonic measure of E in D, evaluated at x. Let
D be an open set, x∈ D and R> 0. Then

ωx(D ∩ ∂B(x,R),D ∩ B(x,R)) ≤ A0 exp
(
− A1R

wη(D)

)
,

where positive constantsA0 andA1 depend only onη and n.

Proposition2.4has a parabolic counterpart.

Proposition 2.5. Let P(t, x,D) =
∫

D
pD(t, x, y)dy. There exist positive constantsA2 and A3 de-

pending only onη and n such that

P(t, x,D) ≤ A2 exp
(
− A3t

wη(D)2

)
for all t > 0 and x∈ D.

The above propositions show similarity between an elliptic problem and parabolic prob-
lem. With the aid of Proposition2.4, we ([Aik01]) developed the box argument, which is
a combination of careful decomposition of the domain and repeated application of the maxi-
mum principle. It was inspired by Bass-Burdzy [BB92]. With the aid of Proposition2.5, we
have a parabolic counterpart, which may be referred to as aparabolic box argument. We can
give general sufficient conditions in terms of capacitary width for IU and the global bound-
ary Harnack principle (GBHP) in a unified fashion. Forf (x) > 0 on D and t > 0 we write
wη( f < t) = wη({x ∈ D : f (x) < t}).

Theorem 2.6.Let g= G(·, x0) with x0 ∈ D.
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(i) If
∫ 1

0
wη(g < t)2dt

t
< ∞, then D is IU.

(ii) If
∫ 1

0
wη(g < t)

dt
t
< ∞, then D satisfies the GBHP.

2.2. Geometrical sufficient conditions. Theorems2.6 yields many sufficient conditions for
IU and the GBHP. Definequasihyperbolic metric kD(x, y) by

kD(x, y) = inf
γ

∫
γ

ds
δD(γ(s))

for x, y ∈ D,

where the infimum is taken over all rectifiable curvesγ connectingx andy in D; γ is parame-
terized asγ(s), 0 ≤ s ≤ ℓ(γ), by arc lengths with ℓ(γ) being the length ofγ. If h is a positive
harmonic function inD, then

exp(−AkD(x, y)) ≤ h(y)
h(x)

≤ exp(AkD(x, y)) for x, y ∈ D,

whereA > 0 depends only onn. In particular,

{x ∈ D : g(x) < t} ⊂ {x ∈ D : kD(x, x0) > A log(1/t)}.
The change of variables= A log(1/t) gives

Corollary 2.7. The following statements hold:

(i) If
∫ ∞

0
wη(kD(·, x0) > s)2ds< ∞, then D is IU.

(ii) If
∫ ∞

0
wη(kD(·, x0) > s)ds< ∞, then D satisfies the GBHP.

LetΦ(t) be a positive nondecreasing continuous function oft > 0 withΦ(0) = 0 and let

LΦ(D) =
{
f :
∫

D
Φ(| f (x)|)dx< ∞

}
.

If Φ(t) = tp, thenLΦ(D) = Lp(D).

Theorem 2.8.The following statements hold.

(i) Let n= 2. If log+(1/g) ∈ L1(D), then D is IU.
(ii) Let n≥ 3. Suppose

(2.1)
∫ ∞

1

( t
Φ(t)

)2/(n−2)
dt < ∞.

If log+(1/g) ∈ LΦ(D), then D is IU.
(iii) Let n≥ 2. Suppose

(2.2)
∫ ∞

1

( t
Φ(t)

)1/(n−1)
dt < ∞.

If log+(1/g) ∈ LΦ(D), then D satisfies the GBHP.

Remark2.9. (i) Let n ≥ 3. Typical examples ofΦ(t) satisfying (2.1) areΦ(t) = tp with
p > n/2 andΦ(t) = tn/2 logα(e+ t) with α > (n− 2)/2. See [Cip94, Theorem 3].

(ii) Let n ≥ 2. Typical examples ofΦ(t) satisfying (2.2) areΦ(t) = tp with p > n and
Φ(t) = tn logα(e+ t) with α > n− 1.
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Corollary 2.10. The following statements hold.

(i) Let n= 2. If kD(·, x0) ∈ L1(D), then D is IU.
(ii) Let n≥ 3 and supposeΦ satisfies(2.1). If kD(·, x0) ∈ LΦ(D), then D is IU (cf.[Cip94,

Theorem 6]).
(iii) Let n≥ 2 and supposeΦ satisfies(2.2). If kD(·, x0) ∈ LΦ(D), then D satisfies the GBHP.

Remark2.11. The sufficient conditions for the GBHP in Theorem2.8 and Corollary2.10are
new even ifΦ(t) = tp with p > n.

Let us consider families of domains defined by conditions in terms of the quasihyperbolic
metric.

Definition 2.12. We say thatD satisfies the quasihyperbolic boundary condition of orderα
(QHB (α)) if

kD(x, x0) ≤ A
(δD(x0)
δD(x)

)α
+ A′ for all x ∈ D

for α > 0. We say thatD satisfies the QHB (0) if

kD(x, x0) ≤ A log
δD(x0)
δD(x)

+ A′ for all x ∈ D

We say thatD satisfies the QHB(Φ) condition if

kD(x, x0) ≤ Φ
(δD(x0)
δD(x)

)
for all x ∈ D.

Definition 2.13. Let 0 < r0 ≤ ∞. We say thatD satisfies the capacity density condition
(abbreviated to CDC) up tor0 if there exists positive constantη such that

CapB(x,2r)(B(x, r) \ D)

CapB(x,2r)(B(x, r))
≥ η

wheneverx ∈ ∂D and 0< r < r0. We simply say thatD satisfies the CDC if it satisfies the CDC
up tor0 for somer0 > 0.

Theorem A ([Bañ91] and [Aik09]). Suppose D satisfies the CDC.

(i) If D satisfies the QHB(α) with 0 ≤ α < 2, then D is IU.
(ii) If D satisfies the QHB(α) with 0 ≤ α < 1, then the GBHP holds.

Theorem 2.14.Suppose D satisfies the CDC and the QHB(Φ).

(i) If
∫ ∞

1
Φ(t)

dt
t3
< ∞, then D is IU.

(ii) If
∫ ∞

1
Φ(t)

dt
t2
< ∞, then D satisfies the GBHP.

Remark2.15. (i) Typical examples ofΦ(t) satisfying (i) areΦ(t) = tα with α < 2 and
Φ(t) = t2 log−α(e+ t) with α > 1. See [Bañ91, Corollary 2.8].

(ii) Typical examples ofΦ(t) satisfying (ii) areΦ(t) = tα with α < 1 andΦ(t) = t log−α(e+t)
with α > 1.

Davis [Dav91] and Bass-Burdzy [BB92] studied IU for domains above the graph of a func-
tion. We writex = (x′, xn) ∈ Rn. By B′(x′,R) we denote the (n− 1)-dimensional open ball with
center atx′ and radiusR.



INTRINSIC ULTRACONTRACTIVITY 7

Theorem B. For a negative upper semicontinuous function f(x′) on B′(0,R) we put

D f = {(x′, xn) : |x′| < R, f (x′) < xn < 1}.
Then we have the following assertions:

(i) If n = 2 and f ∈ L∞(B′(0,R)), then Df is IU ([Dav91, Theorem 2]).
(ii) If f ∈ Lp(B′(0,R)) with p> n− 1, then Df is IU ([BB92, Theorem 1.22]).
(iii) If n ≥ 3, then there exists f∈ Lp(B′(0,R)) with p< n−1 such that Df is not IU ([BB92,

Section 4]).

Obviously, (i) is included in (ii). Note thatD f can be unbounded in (ii). We remark thatD f

satisfies the quasihyperbolic boundary condition.

Proposition 2.16. If f ∈ Lp(B′(0,R)) with p > 0, then Df satisfies the QHB((p + n − 1)/p)
condition.

It is easy to see that (p+ n− 1)/p < 2 if and only if p > n− 1. Hence, under the additional
assumption of the CDC, TheoremB (ii) can be derived from TheoremA (i). The significance of
TheoremB (ii) is that IU follows without the CDC.This remarkable phenomenon is rooted in
[BB92, Lemma 2.4], which is reformulated analytically as an extended Harnack inequality with
exceptional sets in [Aik14]. The critical casep = n− 1 in TheoremB (iii) was open. Actually,
we shall show in Corollary2.21below that there isf ∈ Ln−1(B′(0,R)) such thatD f is not IU
in casen ≥ 3. So, let us consider a condition sharper thanf ∈ Ln−1(B′(0,R)). Let Φ(t) be a
positive nondecreasing function oft > 0.

Theorem 2.17.Assume thatΦ(t)/tn−1 is nondecreasing and that

(2.3)
∫ ∞

1
Φ(t)1/(1−n)dt < ∞.

If f ∈ LΦ(B′(0,R)), then Df is IU.

Remark2.18. Typical examples ofΦ(t) satisfying (2.3) areΦ(t) = tp with p > n − 1 and
Φ(t) = tn−1 logα(e+ t) with α > n− 1.

Theorem2.17can be extended toLΦ-domains. A counterpart of Theorem2.17for the GBHP
has very different appearance.

Theorem C ([Aik14, Theorem 1.3]). Letψ(t) be a nondecreasing continuous function for t> 0.
Suppose thatψ satisfieslim supt→0ψ(Mt)/ψ(t) < M for some M> 1 and∫ 1

0

ψ(t)
t

dt < ∞

Then everyψ-Hölder domain satisfies the GBHP.

Theorem 2.19. Let L > 0 and let r(t) be a positive nonincreasing L-Lipschitz function of
t ∈ [−1,∞), i.e.,

0 ≤ r(t) − r(T) ≤ L(T − t) for − 1 ≤ t < T < ∞.
Define aninfinite funnelor a solid of rotation by

V = {(x′, xn) : −∞ < xn < 1, |x′| < r(−xn)}.
See Figure1. Then the following statements are equivalent:

(i) V is IU.
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(ii) V satisfies the Cranston-McConnell inequality.

(iii)
∫ ∞

0
r(t)dt < ∞.

(iv)
∫ ∞

0
wη(kV(·, x0) > s)2ds< ∞.

(v)
∫ 1

0
wη(g < t)2dt

t
< ∞.

(0,1)

x0 = (0,0)

r(t)−t

Figure 1. Infinite funnel.

Corollary 2.20. Let r(t) = (t + 3)−1. Then V satisfies the QHB(2) and yet V is not IU.

Corollary 2.21. Let n ≥ 3 and let r(t) = (t + 3)−1 log−α(t + 3) with (n − 1)−1 < α ≤ 1.
Then V is not IU and yet V is represented as Df = {(x′, xn) : |x′| < r(−1), xn > f (x′)} with
f ∈ Ln−1(B′(0, r(−1))).
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