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1 Setting and results

We present without proofs a part of our results in an ongoing joint project [IS2] with
E. Skibsted (Aarhus University). In particular, here, Rellich’s theorem, the limiting
absorption principle and the radiation condition are discussed for the Schrödinger op-
erator

H = H0 + V ; H0 = −1

2
∆ =

1

2
p∗i g

ijpj, pi = −i∂i,

on a connected Riemannian manifold (M, g) with asymptotically Euclidean and/or
hyperbolic ends. Here ∆ is the Laplace–Beltrami operator, and V is a potential-type
perturbation.

We first introduce a set of assumptions on the geometry of (M, g) and on the per-
turbation V , and we state our main results. Our conditions are formulated abstractly
in terms of a certain “escape function”. They apply to a wide class of manifolds and
potentials. See Section 2 for concrete examples satisfying the conditions.

Condition 1.1. Let (M, g) be a connected Riemannian manifold of dimension d ≥ 1.
There exist a function r ∈ C∞(M) with image r(M) = [1,∞) and constants c > 0 and
r0 ≥ 2 such that:

1. The gradient vector field ∇r ∈ X(M) is forward complete, i.e., the integral curve
of ∇r exists for any initial point x ∈ M and any non-negative time t ≥ 0.

2. The bound |∇r| ≥ c holds on {x ∈ M ; r(x) > r0/2}.

We call each component of the open subset E = {x ∈ M ; r(x) > r0} an end of M .
The function r may model a distance function there. In fact, only with Condition 1.1
we can canonically construct the spherical coordinates on E as follows. Note that E is
the union of r-spheres

SR = {x ∈ M ; r(x) = R}; R > r0.
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By Condition 1.1 and the implicit function theorem these r-spheres are submanifolds
of M , and we shall make use of the gradient vector field ∇r to canonically connect
their coordinates. Choose χ ∈ C∞(R) such that

χ(t) =

{
1 for t ≤ 1,
0 for t ≥ 2,

χ ≥ 0, χ′ ≤ 0, (1.1)

and define the normalized gradient vector field X ∈ X(M) by

X = η|∇r|−2∇r; η = 1 − χ(2r/r0). (1.2)

We let

y : M → M, (t, x) 7→ y(t, x) = exp(tX)(x); M ⊆ R × M, (1.3)

be the maximal flow generated by the vector field X. By Condition 1.1 X is also
forward complete, and M contains a neighborhood of [0,∞) × M in R × M . By
definition it satisfies, in local coordinates,

∂ty
i(t, x) = X i(y(t, x)) = (η|∇r|−2(∇r)i)(y(t, x)), y(0, x) = x.

This, in particular, implies that for any x ∈ E and t ≥ 0

r(y(t, x)) = r(x) + t,

and hence the semigroup (1.3) induces a family of diffeomorphic embeddings

ιR,R′ = y(R′ − R, · )|SR
: SR → SR′ ; R ≤ R′ (1.4)

satisfying

ιR′,R′′ ◦ ιR,R′ = ιR,R′′ ; R ≤ R′ ≤ R′′. (1.5)

Using (1.4) and (1.5) we may regard SR ⊆ SR′ for any R ≤ R′ in a well-defined manner,
and this naturally induces a manifold structure on the union

S =
∪

R>r0

SR. (1.6)

In fact, such a manifold S is attained as an inductive limit (not to be elaborated on
here). The manifold S may be considered as a boundary of M at infinity. We can
define σ(x) ∈ S for x ∈ E by considering x ∈ Sr ⊆ S with r = r(x) and whence indeed
identifying x with some σ(x) ∈ S. Let σ be any local coordinates on a neighbourhood
of σ(x) ∈ S. Then the spherical coordinates of a point x ∈ E are the components of
(r, σ). Slightly inconsistently we may write (r, σ) = (r(x), σ(x)). We shall refer to r as
the radius function, and SR ⊆ S as a spherical manifold. Note that in such coordinates
the set E is identified with an open subset of the half-infinite cylinder (r0,∞) × S
whose r-sections are monotonically increasing and exhausting S.
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Condition 1.1 is a topological condition guaranteeing the existence of ends and the
spherical coordinates there, and we need a more restrictive assumption that controls
the geometry of E. Using η of (1.2), we introduce the tensor ` and the associated
differential operator L by

` = g − η|∇r|−2dr ⊗ dr, L = p∗i `
ijpj.

As we can see easily in the spherical coordinates, the tensor ` may be identified with
the pull-back of g to the r-spheres SR for R > r0, and L with the spherical part of −∆.
We remark that the tensor ` clearly satisfies

0 ≤ ` ≤ g on M, `•i(∇r)i = 0 on E, (1.7)

where the first bounds of (1.7) are understood as quadratic form estimates on fibers
of the tangent bundle TM . Let us also recall a local expression of the Levi–Civita
connection ∇: If we denote the Christoffel symbols by

Γk
ij =

1

2
gkl(∂iglj + ∂jgli − ∂lgij),

then for any smooth function f on M

(∇f)i = ∇if = ∂if, (∇2f)ij = ∂i∂jf − Γk
ij∂kf.

Note that ∇2f = ∇∇f is the geometric Hessian of f .

Condition 1.2. There exist constants σ, τ, C > 0 such that globally on M

r∇2r ≥ 1

2
σ|∇r|2` − Cr−τg, (1.8)

and for α = 0, 1∣∣∇α|∇r|2
∣∣ ≤ Cr−α(1+τ), |∇α∆r| ≤ C, |L∆r| ≤ Cr−1−τ . (1.9)

Condition 1.2 says that the ends are geometrically growing, which we remark is a
different property from the monotonicity of the r-spheres mentioned above. For any
R > r0 we let ιR : SR ↪→ M be the inclusion, and note the general identity

(∇2r)ij(∇r)j =
1

2
(∇|∇r|2)i. (1.10)

Then it follows that, in case where r is an exact distance function, i.e., |∇r| = 1
on E, the Hessian ∇2r has no radial components in the spherical coordinates. Then
(∇2r)|SR

is identified with the second fundamental form ι∗R(∇2r) of SR, and (∆r)|SR

is the mean curvature tr[ι∗R(∇2r)] of SR. Here Under Condition 1.2, in general, the
radial components of ∇2r does not vanish but are very small, and hence still we may
regard ∇2r as the second fundamental form with negligible error. The bound (1.8)
implies that the ends are growing, since it bounds the minimal curvature of SR from
below. The bounds in (1.9) are connected to the regularity properties of the mean
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curvature of SR, and in particular, we can bound the maximal curvature from above,
since ι∗R(∇2r) is strictly positive for R > r0 large enough. One benefit of our somewhat
indirect description of the geometry of (M, g) is that it is obviously stable under small
perturbations. Even when it is difficult to compute an exact distance function we may
choose a more useful distance-like function to verify the assumptions.

Finally we would like to impose a long-range type condition on the potential V .
More precisely, taking into account a metric quantity related to the volume growth
of the ends, we formulate it in terms of the effective joint potential given as follows:
Define

q = V +
1

8
η|∇r|−2

[
(∆r)2 + 2∇r∆r

]
; ∇r = (∇r)i∇i. (1.11)

Condition 1.3. There exists a splitting by real-valued functions:

q = q1 + q2; q1 ∈ C1(M) ∩ L∞(M), q2 ∈ L∞(M),

such that for some ρ, C > 0 the following bounds hold globally on M :

|∇rq1| ≤ Cr−1−ρ, |q2| ≤ Cr−1−ρ. (1.12)

Now let us mention the self-adjoint realizations of H and H0 on the Hilbert space
H = L2(M). Since (M, g) can be incomplete the operators H and H0 are not necessarily
essentially self-adjoint on C∞

c (M). We realize H0 as a self-adjoint operator by imposing
the Dirichlet boundary condition, i.e. H0 is the unique self-adjoint operator associated
with the closure of the quadratic form

〈H0〉ψ = −1

2
〈ψ, ∆ψ〉 =

1

2
〈pψ, pψ〉, ψ ∈ C∞

c (M).

We denote the form closure and the self-adjoint realization by the same symbol H0.
Define the associated Sobolev spaces Hs by

Hs = (H0 + 1)−s/2H, s ∈ R. (1.13)

Then H0 may be understood as a closed quadratic form on Q(H0) = H1. Equivalently,
H0 makes sense also as a bounded operator H1 → H−1 whose action coincides with
that for distributions. By the definition of the Friedrichs extension the self-adjoint
realization of H0 is the restriction of such distributional H0 : H1 → H−1 to the domain:

D(H0) = {ψ ∈ H1; H0ψ ∈ H} ⊆ H.

Since V is bounded and self-adjoint by Conditions 1.1–1.3 we can realize the self-adjoint
operator H = H0 + V simply as

H = H0 + V, D(H) = D(H0).

In contrast to (1.13) we introduce the Hilbert spaces Hs with configuration weights:

Hs = r−sH, s ∈ R.
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We consider the r-balls BR = {r(x) < R} and the characteristic functions

Fν = F (BRν+1 \ BRν ), Rν = 2ν , ν ≥ 0, (1.14)

where F (Ω) is used for sharp characteristic function of a subset Ω ⊆ M . Define the
associated Besov spaces B and B∗ by

B = {ψ ∈ L2
loc(M); ‖ψ‖B < ∞}, ‖ψ‖B =

∞∑
ν=0

R1/2
ν ‖Fνψ‖H,

B∗ = {ψ ∈ L2
loc(M); ‖ψ‖B∗ < ∞}, ‖ψ‖B∗ = sup

ν≥0
R−1/2

ν ‖Fνψ‖H,

(1.15)

respectively. We also define B∗
0 to be the closure of C∞

c (M) in B∗. Recall the nesting
holding for any s > 1/2:

Hs ( B ( H1/2 ( H ( H−1/2 ( B∗
0 ( B∗ ( H−s.

Using the function χ ∈ C∞(R) of (1.1), define χn, χ̄n, χm,n ∈ C∞(M) for n > m ≥ 0
by

χn = χ(r/Rn), χ̄n = 1 − χn, χm,n = χ̄mχn.

Let us introduce an auxiliary space:

N = {ψ ∈ L2
loc(M); χnψ ∈ H1 for all n ≥ 0}.

This is the space of functions that satisfy the Dirichlet boundary condition, possibly
with infinite H1-norm on M . Note that under Conditions 1.1–1.3 the manifold M may
be, e.g., a half-space in the Euclidean space, and there could be a “boundary” even for
large r, which is “invisible” from inside M .

Our first theorem is Rellich’s theorem, the absence of B∗
0-eigenfunctions with eigen-

values above a certain critical energy λH ∈ R. We set

λH = lim sup
r→∞

q1 = lim
R→∞

(
sup{q1(x); r(x) ≥ R}

)
, I = (λH ,∞). (1.16)

For many examples, including the Euclidean and the hyperbolic spaces, the essential
spectrum is given by σess(H) = [λH ,∞). This is seen in terms of Weyl sequences, see
[K].

Theorem 1.4. Suppose Conditions 1.1–1.3. If a function φ ∈ L2
loc(M) satisfies that

1. χ̄nφ ∈ N ∩ B∗
0 for some n ≥ 0,

2. (H − λ)φ = 0 for some λ ∈ I in the distributional sense,

then φ = 0 in M .

Corollary 1.5. The operator H has no eigenvalues above λH : σpp(H) ∩ I = ∅.
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In the statement of Theorem 1.4 we can drop the space N if the r-annuli BRν+1\BRν

are relatively compact in M for all large ν ≥ 0. Note that an r-ball BR, R ≥ 1, may be
unbounded under Conditions 1.1–1.3. Corollary 1.5 was proved in a somewhat similar
setting in [IS1].

Next we discuss the limiting absorption principle and the radiation condition related
to the resolvent

R(z) = (H − z)−1, z ∈ C \ σ(H).

We first establish a locally uniform bound for the resolvent R(z) as a map B → B∗

under the following compactness condition.

Condition 1.6. In addition to Conditions 1.1–1.3 the embedding r−sH1 ↪→ H is
compact for any s > 0.

In practice, due to Rellich’s compact embedding theorem, a sufficient condition for
Condition 1.6 is that M is complete and the r-balls BR, R ≥ 1, are bounded. More
generally, even if M is incomplete, it suffices that M is isometrically embedded into
some complete manifold, and the image of each BR, R ≥ 1, under this embedding is
relatively compact.

For notational simplicity we fix large C > 0 and set

h = ∇2r + 2Cr−1−τg ≥ Cr−1−τg > 0,

cf. (1.7) and (1.8). By (1.10) the radial components of h are small, and we may
consider h as the second fundamental form with negligible error. For any open subset
I ⊆ I we denote

I± = {z = λ ± iΓ ∈ C| λ ∈ I, Γ ∈ (0, 1)},

respectively. We also use the notation 〈T 〉φ = 〈φ, Tφ〉 and pr = −i∇r.

Theorem 1.7. Suppose Condition 1.6 and let I ⊆ I be any relatively compact open
subset. Then there exists C > 0 such that for any φ = R(z)ψ with z ∈ I± and ψ ∈ B

‖φ‖B∗ + ‖prφ‖B∗ + 〈p∗i hijpj〉1/2
φ + ‖H0φ‖B∗ ≤ C‖ψ‖B. (1.17)

In our theory the Besov boundedness (1.17) does not immediately imply the limiting
absorption principle, and for that we need to establish radiation condition bounds. Let
us impose an additional regularity assumption on the joint potential q.

Condition 1.8. In addition to requiring that Condition 1.6 holds, there exist splittings
q1 = q11 + q12 and q2 = q21 + q22 by real-valued functions

q11 ∈ C2(M) ∩ L∞(M), q12, q21 ∈ C1(M) ∩ L∞(M), q22 ∈ L∞(M)

and constants ρ̃, C > 0, such that for α = 0, 1

|∇rq11| ≤ Cr−(1+ρ̃/2)/2, |`•i(∇q11)i| ≤ Cr−1−ρ̃/2, |∇∇rq11| ≤ Cr−1−ρ̃/2,

|∇q12| ≤ Cr−1−ρ̃/2, |(∇r)αq21| ≤ Cr−α−ρ̃, |q22| ≤ Cr−1−ρ̃/2.
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Our radiation condition bounds are stated in terms of a radial derivative A and
an asymptotic complex phase a given below. Let A be a distributional differential
operator expressed by

A = Re pr =
1

2

(
pr + (pr)∗

)
; pr = −i∇r = −i(∇r)i∇i.

Pick a smooth non-increasing function rλ ≥ r0 of λ > λH such that

λ + λH − 2q1 ≥ 0 for r ≥ 1

2
rλ,

and that rλ = r0 for all λ large enough. Then we set for z = λ ± iΓ ∈ I ∪ I±

a = az = ηλ

(
|∇r|

√
2(z − q1) ±

prq11

4(z − q1)

)
; ηλ = 1 − χ(2r/rλ), (1.18)

respectively, where the branch of square root is chosen such that Re
√

w > 0 for
w ∈ C \ (−∞, 0]. Note that the phase a of (1.18) is an approximate solution to the
radial Riccati equation

±pra + a2 − 2|∇r|2(z − q1) = 0 (1.19)

in the sense that it makes the quantity on the left-hand side of (1.19) small for large
r ≥ 1. The first term in the brackets of (1.18) alone already gives an approximate
solution to the same equation, however, with the second term a better approximation
is obtained. Set

β̃ =
1

2
min{ρ̃, σ, τ} > 0. (1.20)

Theorem 1.9. Suppose Condition 1.8, and let I ⊆ I be any relatively compact open
subset. Then for all β ∈ [0, β̃) there exists C > 0 such that for any φ = R(z)ψ with
ψ ∈ r−βB and z ∈ I±

‖rβ(A ∓ a)φ‖B∗ + 〈p∗i r2βhijpj〉1/2
φ ≤ C‖rβψ‖B,

respectively.

As an application we obtain the limiting absorption principle.

Corollary 1.10. Suppose Condition 1.8, and let I ⊆ I be any relatively compact open
subset. For any s > 1/2 and ε ∈ (0, min{(2s − 1)/(2s + 1), β̃/(β̃ + 1)}) there exists
C > 0 such that for all z, z′ ∈ I+ or z, z′ ∈ I− and α = 0, 1

‖pαR(z) − pαR(z′)‖B(Hs,H−s) ≤ C|z − z′|ε.

In particular, the operator pαR(z) attains uniform limits as I± 3 z → λ ∈ I in the
norm topology of B(Hs,H−s):

pαR(λ ± i0) := lim
I±3z→λ

pαR(z), λ ∈ I,

respectively. These limits R(λ ± i0) ∈ B(B,B∗) and map into N .
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Corollary 1.11. The operator H has no singular continuous spectrum above λH :
σsc(H) ∩ I = ∅.

Absence of singular continuous spectrum is a standard application of the limiting
absorption principle.

Now we have the limiting resolvents R(λ± i0), and the radiation condition bounds
for real spectral parameters follow directly from Theorem 1.9.

Corollary 1.12. Suppose Condition 1.8, and let I ⊆ I be any relatively compact open
subset. Then for all β ∈ [0, β̃) there exists C > 0 such that for any φ = R(λ ± i0)ψ
with ψ ∈ r−βB and λ ∈ I

‖rβ(A ∓ a)φ‖B∗ + 〈p∗i r2βhijpj〉1/2
φ ≤ C‖rβψ‖B, (1.21)

respectively.

As another application of the radiation condition bounds we can characterize the
limiting resolvents R(λ± i0). For the Euclidean space such characterization is usually
referred to as the Sommerfeld uniqueness result.

Corollary 1.13. Suppose Condition 1.8, and let λ ∈ I, φ ∈ L2
loc(M) and ψ ∈ r−βB

with β ∈ [0, β̃). Then φ = R(λ±i0)ψ holds if and only if both of the following conditions
hold:

1. φ ∈ N ∩ rβB∗ and (A ∓ a)φ ∈ r−βB∗
0 .

2. (H − λ)φ = ψ in the distributional sense.

2 Examples

In this section we provide several examples of Riemannian manifolds (M, g) satisfying
Condition 1.8. For simplicity we consider the case where V ≡ 0. We let (M, g) be
a complete Riemannian manifold, and assume that M has explicit end structure as
follows: Suppose that there exist a compact subset K ⊆ M and a closed Riemannian
manifold (S, h) of dimension d − 1 such that the closure

(M \ K) ∼= [2,∞) × S,

and that in the “spherical coordinates” (r, σ) ∈ (2,∞) × S the metric g is of warped-
product type:

g(r, σ) = dr ⊗ dr + f(r)h(σ); h(σ) = hαβ(σ) dσα ⊗ dσβ. (2.1)

Here the Greek indices run over 2, . . . , d. We may extend r suitably to K to be
a globally defined smooth function with image r(M) = [1,∞). Then, if we choose
r0 = 4, Condition 1.1 and the compactness condition stated in Condition 1.6 are
clearly satisfied. Below we are goint to examine the other bounds in Condition 1.8 by
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specifying the growth rate f of the ends explicitly. Note that the Christoffel symbols
are computed as

Γr
rr = Γr

rα = Γr
αr = Γα

rr = 0, Γr
αβ = −1

2
f ′hαβ, Γα

rβ = Γα
βr =

1

2

f ′

f
δα

β,

where δα
β denotes Kronecker’s δ. Then, on the ends E

|∇r|2 = 1, ∇2r =
1

2
f ′h, ∆r =

d − 1

2

f ′

f
, L∆r = 0,

and, since V ≡ 0,

q =
d − 1

8

[
d − 1

4

(
f ′

f

)2

+

(
f ′

f

)′]
.

Now we can verify Condition 1.8 for the following examples.

Examples 2.1. 1. If

f(r) = rθ; θ > 0,

then Condition 1.8 is satisfied for σ = θ, arbitrary τ > 0, ρ = 2 and ρ̃ = 6 with
q1 = q11 = q, and the critical energy is λH = 0. The Euclidean space corresponds
to f(r) = r2 and S being the standard unit sphere.

2. If

f(r) = exp(δrθ); δ > 0, θ ∈ (0, 1),

then Condition 1.8 is satisfied for arbitrary σ > 0, τ > 0, ρ = 2−2θ and ρ̃ = 6−4θ
with q1 = q11 = q, and the critical energy is λH = 0.

3. Let

f(r) = exp(κr + δθ(r)),

where κ > 0 and θ < 1 are constants and δθ is a function of r satisfying

|δ(k)
θ (r)| ≤ Crθ−k for k = 1, 2, 3, 4.

Then Condition 1.8 is satisfied for arbitrary σ > 0, τ > 0, ρ = 1−θ and ρ̃ = 4−2θ
with q1 = q11 = q, and the critical energy is λH = (d− 1)2κ2/32. The hyperbolic
space corresponds to f(r) = (sinh r)2 and S being the standard unit sphere, for
which θ < 1 may be arbitrary.

We can further perturb the models of Examples 2.1. For example, we can add to
(2.1) suitable lower order terms, whether warped-product type or not. We can also put
any compact obstacle or attach topological handles to these manifolds. Obstacles can
be also non-compact, as long as the gradient vector field ∇r is inward pointing on the
boundary as consistent with the following more general example.
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Example 2.2. Let (M, g) be any of the Riemannian manifolds discussed in Examples 2.1.
Let Ω ⊆ M be a connected open subset such that the r-sections

SΩ,R = Ω ∩ ({R} × S),

regarded as a subset of S, are monotonically increasing for large R > r0. If we appro-
priately modify the function r for its small values, then Ω satisfies Condition 1.8 with
the same parameters σ, τ, ρ and ρ̃ as those of M . This example in particular includes
the solid cones and the half-spaces of the Euclidean and the hyperbolic spaces. More
general regions such as the complement of a solid paraboloid in the Euclidean space
are also included.
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