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1 Asymptotic profiles of vanishing solutions

Let Ω be a bounded domain of RN with smooth boundary ∂Ω. We are concerned with the
Cauchy-Dirichlet problem for Fast Diffusion Equation (FDE, for short),

∂t
(
|u|m−2u

)
= ∆u in Ω × (0,∞), (1)

u = 0 on ∂Ω × (0,∞), (2)

u(·, 0) = u0 in Ω, (3)

where ∂t = ∂/∂t, under the assumptions that

u0 ∈ H1
0 (Ω), 2 < m < 2∗ :=

2N

(N − 2)+
. (4)

By putting w = |u|m−2u, Equation (1) is rewritten as a more usual form,

∂tw = ∆
(
|w|r−2w

)
in Ω × (0,∞)

with the exponent r = m′ := m/(m−1) ∈ (1, 2). In particular, FDE arises in Plasma Physics
to describe anomalous diffusion of plasma in toroidal flow (see [4, 5, 6] and [32]).

Notation. We write ‖ · ‖H1
0 (Ω) := ‖∇ · ‖L2(Ω). For a function u = u(x, t) from Ω × (0,∞) to

R, we often write u(t) := u(·, t), which is a function from Ω to R, for each fixed time t > 0.

One of typical features of solutions to (FD) (:= (1)–(3)) is the extinction in finite time,
namely, every solution vanishes at a finite time (see [34, 7, 18, 27]). Moreover, Berryman
and Holland [5] determined the optimal extinction rate of solutions u = u(x, t) vanishing at a
finite time t∗ > 0 under (4). More precisely, it holds that

c1(t∗ − t)
1/(m−2)
+ ≤ ‖u(t)‖H1

0 (Ω) ≤ c2(t∗ − t)
1/(m−2)
+ for all t ≥ 0

with c1, c2 > 0, provided that u0 6≡ 0. Here t∗ = t∗(u0) is called extinction time (of the unique
solution u(x, t)) for each data u0. Then the asymptotic profile φ = φ(x) of each solution
u = u(x, t) is defined by

φ(x) := lim
t↗t∗

(t∗ − t)−1/(m−2)u(x, t) in H1
0 (Ω).

In order to characterize φ, we apply the following transformation:

v(x, s) := (t∗ − t)−1/(m−2)u(x, t) and s := log(t∗/(t∗ − t)) ≥ 0. (5)

Then the asymptotic profile φ = φ(x) of u = u(x, t) is reformulated as

φ(x) = lim
s↗∞

v(x, s) in H1
0 (Ω).

Moreover, (FD) is rewritten as the following rescaled problem (RP):

∂s
(
|v|m−2v

)
= ∆v + λm|v|m−2v in Ω × (0,∞), (6)

v = 0 on ∂Ω × (0,∞), (7)

v(·, 0) = v0 in Ω, (8)
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where v0 = t∗(u0)
−1/(m−2)u0 and λm = (m−1)/(m−2) > 0. This problem can be formulated

as a (generalized) gradient flow,

∂s
(
|v|m−2v

)
(s) = −J ′(v(s)) in H−1(Ω), s > 0, v(0) = v0,

where J ′ stands for the Fréchet derivative of the functional,

J(w) =
1

2
‖w‖2H1

0 (Ω) −
λm
m

‖w‖mLm(Ω) for w ∈ H1
0 (Ω).

Hence s 7→ J(v(s)) is nonincreasing. Then it follows that

Theorem 1 (Asymptotic profiles (Berryman and Holland [5]))� �
Let u0 ∈ H1

0 (Ω) \ {0} and let v be a rescaled solution. For any sequence sn → ∞, there
exist a subsequence (n′) of (n) and φ ∈ H1

0 (Ω) \ {0} such that v(sn′) → φ strongly in
H1

0 (Ω). Moreover, φ solves the Emden-Fowler equation (EF):

−∆φ = λm|φ|m−2φ in Ω, φ = 0 on ∂Ω. (9)� �
See also [29, 19, 35] and [8, 9, 10, 11, 12] for related results. In particular, the asymptotic
profile φ is uniquely determined for each nonnegative data u0 ≥ 0 (see [20]).

One can also find that the set of all asymptotic profiles of solutions for (FD) coincides
with the set of all nontrivial solutions of (EF) (= the set of all nontrivial critical points of J).
Here and henceforth, we denote by S these sets.

2 Stability analysis of asymptotic profiles

In this talk, we address ourselves to the stability of asymptotic profiles. Namely, our question is
whether or not solutions of (1)–(3) emanating from a small neighborhood of an asymptotic pro-
file φ ∈ S also have the same profile φ. In order to precisely formulate such a notion of stability,
let us recall the transformation (5). Taking account of the relation, v0 = t∗(u0)

−1/(m−2)u0,
we need to introduce the phase set,

X :=
{
t∗(u0)

−1/(m−2)u0 : u0 ∈ H1
0 (Ω) \ {0}

}
=

{
v0 ∈ H1

0 (Ω): t∗(v0) = 1
}
,

which is homeomorphic to a unit sphere in H1
0 (Ω) and includes all nontrivial solutions of

(EF) (see [2, Propositions 6 and 10]). Then notions of (asymptotic) stability and instability
of profiles are defined as follows:

Definition 2 (Stability and instability of profiles, Akagi-Kajikiya [2])� �
Let φ ∈ S.

(i) φ is said to be stable, if for any ε > 0 there exists δ > 0 such that any solution v of
(6), (7) satisfies

sup
s∈[0,∞)

‖v(s) − φ‖H1
0 (Ω) < ε,

whenever v(0) ∈ X and ‖v(0) − φ‖H1
0 (Ω) < δ.

(ii) φ is said to be unstable, if φ is not stable.

(iii) φ is said to be asymptotically stable, if φ is stable, and moreover, there exists δ0 > 0
such that any solution v of (6), (7) satisfies

lim
s↗∞

‖v(s) − φ‖H1
0 (Ω) = 0,

whenever v(0) ∈ X and ‖v(0) − φ‖H1
0 (Ω) < δ0.� �
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Let d be the least energy of J over nontrivial solutions, i.e.,

d := inf
v∈S

J(v), S = { nontrivial solutions of (EF) }.

A least energy solution φ of (EF) means φ ∈ S satisfying J(φ) = d. One can prove that
every least energy solution of (EF) is sign-definite (i.e., positive or negative) by using strong
maximum principle (see, e.g., [33] for variational analysis).

Theorem 3 (Stability criteria for isolated profiles [2])� �
Let φ be a least energy solution of (EF). Then the following (i) and (ii) hold:

(i) φ is a stable profile, if φ is isolated in H1
0 (Ω) from the other least energy solutions.

(ii) φ is an asymptotically stable profile, if φ is isolated in H1
0 (Ω) from the other sign-

definite solutions. In particular, if φ is the unique positive solution of (EF), then φ
is asymptotically stable in the sense of profile.

Let φ be a sign-changing solution of (EF). Then (iii) and (iv) below are satisfied.

(iii) φ is not an asymptotically stable profile.

(iv) φ is an unstable profile, if φ is isolated in H1
0 (Ω) from {ψ ∈ S : J(ψ) < J(φ)}.� �

In case Ω = BN (R) := {x ∈ RN : |x| < R}, it is well known by [21] that (EF) admits
the unique positive radial solution φ and no other positive solution. Hence φ is the unique
asymptotic profile of positive solutions for (FD). Moreover, by Theorem 3, the positive radial
profile φ is asymptotically stable.

On the other hand, in case

Ω = AN (a, b) := {x ∈ RN : a < |x| < b}, 0 < a < b,

Coffman [17] proved that the least energy solution is not radially symmetric, provided that
(b − a)/a � 1 (see also [30, 13]). Therefore by rotational transform, least energy solutions
form a continuum in H1

0 (Ω), and hence, they are beyond the scope of the stability criteria
mentioned above.

Remark 4 (Instability of the positive radial profile in thin annular domains). It is also proved
by Ni [31] that (EF) admits the unique positive radial solution. For thin annuli, (b−a)/a� 1,
the radial positive solution does not attain the least energy, and therefore, it is also beyond the
scope of Theorem 3. In [1], the positive radial profile turns out to be not asymptotically stable
under some quantitative condition on the (relative) thickness of the annulus, and furthermore,
it is unstable for N = 2 (see also [3]).

3 Stability of least energy profiles

The main purpose of this talk is to prove the stability of all (possibly non-isolated) least energy
solutions for smooth bounded domains. To this end, we restrict ourselves to nonnegative
solutions for (1)–(3) (and also those for (6)–(8)). Define a subset of X by

X+ := {v0 ∈ X : v0 ≥ 0 a.e. in Ω}.

Then one can see that the solution v(·, s) of (6)–(8) is lying on X+ for any s > 0, provided that
the initial data v0 belongs to X+ (indeed, the nonnegativity of v(·, s) is inherited from v0).
Moreover one can rewrite Definition 2 by replacing X with X+ to consider only nonnegative
solutions of (6)–(8).
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Our main result reads,

Theorem 5 (Stability of least energy profiles for FDE)� �
Let φ > 0 be a least energy solution of (EF). Then φ is stable (in the sense of asymptotic
profiles for (1)–(3)) under the flow on X+ generated by nonnegative solutions for (6)–(8).� �

Our proof of the theorem above will rely on a uniform extinction estimate of solutions for
(1)–(3) (see [19]) as well as the so-called  Lojasiewicz-Simon inequality (see [20]). Both devices
are established for nonnegative solutions.

The  Lojasiewicz-Simon inequality has been vigorously studied so far and usually employed
to prove the convergence of each solution for nonlinear parabolic (and also damped wave)
equations to a prescribed (possibly non-isolated) stationary solution as t → ∞ (and hence,
the ω-limit set of each evolutionary solution turns out to be singleton). More precisely, let
E : X → R be a “smooth” functional defined on a Banach space X and let ψ be a critical point
of E (or a stationary point), i.e., E′(ψ) = 0 in the dual space X∗, where E′ : X → X∗ denotes
the Fréchet derivative of E. Then an abstract form of the  Lojasiewicz-Simon inequality is as
follows (see, e.g., [36, 28, 25, 22, 20, 24, 26, 15, 16, 14, 23]): there exist constants θ ∈ (0, 1/2]
and ω, δ > 0 such that

|E(v) − E(ψ)|1−θ ≤ ω‖E′(v)‖X∗ for all v ∈ X satisfying ‖v − ψ‖X < δ

(cf. there are several variants with different choices of norms).
We close this section with precise statements of the uniform extinction estimate and the

 Lojasiewicz-Simon inequality, which will be used to prove Theorem 5.

Lemma 6 (Uniform extinction estimate for FDE [19])� �
Let u0 ∈ H1

0 (Ω), u0 ≥ 0 and let u = u(x, t) be the nonnegative solution of (1)–(3) with
the initial data u0. Then for each t0 ∈ (0, t∗/2], it holds that

‖um−1(t)‖L∞(Ω) ≤ K (t∗ − t)
(m−1)/(m−2)
+ for all t ≥ t0,

where t∗ is the extinction time of u(x, t). Here K is a constant given by

K := γ

(
t0

t∗ − t0

)−N
κ

R(u0)
2N
κ

+
2(m−1)
m−2 , κ :=

2N −Nm+ 2m

m− 1
> 0

with a constant γ = γ(N,m, |Ω|) > 0 and the Rayleigh quotient,

R(w) :=
‖w‖H1

0 (Ω)

‖w‖Lm(Ω)
for w ∈ H1

0 (Ω).

� �
Let φ be an arbitrary least energy solution of (EF). Since least energy solutions are sign-

definite, we also assume φ ≥ 0 without any loss of generality. Moreover, by strong maximum
principle, one can assure that

0 < φ(x) < Lφ := ‖φ‖L∞(Ω) + 1 for all x ∈ Ω and ∂νφ < 0 on ∂Ω.

Then the following  Lojasiewicz-Simon inequality holds:
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Lemma 7 ( Lojasiewicz-Simon inequality [20])� �
For any L > Lφ, there exist constants θ ∈ (0, 1/2), ω, δ0 > 0 such that

|J(w) − J(φ)|1−θ ≤ ω
∥∥J ′(w)

∥∥
H−1(Ω)

(10)

for all w ∈ H1
0 (Ω) satisfying 0 ≤ w(x) ≤ L for a.e. x ∈ Ω and ‖w − φ‖H1

0 (Ω) < δ0.� �
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