On the effect of spatial expansion on nonlinear Schrödinger equations 中村 誠 (山形大学・理学部) 2015年3月14日 於熊本大学

1 Introduction

We consider local and global solutions for the Cauchy problem of nonlinear Schrödinger equations derived from the nonrelativistic limit of nonlinear Klein-Gordon equations in de Sitter spacetime. We put

spatial dimension : $n \ge 1$	Planck constant : $\hbar := h/2\pi$
mass : $m > 0$	Hubble constant : $H \in \mathbb{R}$
weight function $b(s) := 1 - 2mHs/\hbar$	$S_0 := \hbar/2mH$ if $H > 0$, $S_0 := \infty$ if $H \le 0$.

For $0 \le \mu_0 \le n/2$ and $0 \le S \le S_0$, we consider

$$\begin{cases} i\frac{\partial u}{\partial s}(s,x) \pm \frac{1}{2}\Delta u(s,x) \mp \frac{V'\left(u(s,x)b(s)^{n/4}\right)}{2b(s)^{1+n/4}} = 0, \\ u(0,\cdot) = u_0(\cdot) \in H^{\mu_0}(\mathbb{R}^n) \end{cases}$$
(1.1)

for $(s,x) \in [0,S) \times \mathbb{R}^n$, where V' is a nonlinear function, $\Delta := \sum_{j=1}^n \partial^2 / \partial x_j^2$. We say that u is a global solution of (1.1) if it exists on $[0, S_0)$.

We consider the potential of power type given by

$$V(v) := \frac{\kappa |v|^{p+1}}{p+1}, \quad V'(v) = \kappa |v|^{p-1}v, \tag{1.2}$$

where $\kappa \in \mathbb{C}$ and $1 \leq p < \infty$. Then (1.1) is rewritten as

$$\begin{cases} i\frac{\partial u}{\partial s}(s,x) \pm \frac{1}{2}\Delta u(s,x) \mp \frac{\kappa}{2}b(s)^{n(p-1)/4-1}|u(s,x)|^{p-1}u(s,x) = 0, \\ u(0,\cdot) = u_0(\cdot) \in H^{\mu_0}(\mathbb{R}^n) \end{cases}$$
(1.3)

for $(s, x) \in [0, S) \times \mathbb{R}^n$ and $0 \le \mu_0 < n/2$. The scaling number of p for the Minkowski spacetime H = 0 is given by $p = p(\mu_0) := 1 + 4/(n - 2\mu_0)$.

For any real numbers $2 \le q, r \le \infty$, we say that the pair (q, r) is admissible if it satisfies 1/r + 2/nq = 1/2 and $(q, r, n) \ne (2, \infty, 2)$. For $\mu_0 \ge 0$ and two admissible pairs $\{(q_j, r_j)\}_{j=1,2}$, we define

$$X^{\mu_0}([0,S)) := \{ u \in C([0,S), H^{\mu_0}(\mathbb{R}^n)); \max_{\mu=0,\mu_0} \|u\|_{X^{\mu}([0,S))} < \infty \},$$

where

$$|u||_{X^{\mu}([0,S))} := \begin{cases} ||u||_{L^{\infty}((0,S),L^{2}(\mathbb{R}^{n}))\cap\bigcap_{j=1,2}L^{q_{j}}((0,S),L^{r_{j}}(\mathbb{R}^{n}))} & \text{if } \mu = 0, \\ ||u||_{L^{\infty}((0,S),\dot{H}^{\mu}(\mathbb{R}^{n}))\cap\bigcap_{j=1,2}L^{q_{j}}((0,S),\dot{B}^{\mu}_{r_{j}2}(\mathbb{R}^{n}))} & \text{if } \mu > 0. \end{cases}$$

Theorem 1.1. Let $n \ge 1$, $H \in \mathbb{R}$, $\kappa \in \mathbb{C}$, $0 \le \mu_0 < n/2$, and $1 \le p \le p(\mu_0) := 1+4/(n-2\mu_0)$. Assume $\mu_0 < p$ if p is not an odd number. There exist two admissible pairs $\{(q_j, r_j)\}_{j=1,2}$ with the following properties.

(1) (Local solutions.) For any initial data $u_0 \in H^{\mu_0}(\mathbb{R}^n)$, there exist S > 0 with $S \leq S_0$ and a unique time local solution u of (1.3) in $X^{\mu_0}([0,S))$. Here, S depends on the norm of $||u_0||_{\dot{H}^{\mu_0}(\mathbb{R}^n)}$ when $p < p(\mu_0)$, and the profile of u_0 when $p = p(\mu_0)$.

(2) (Small global solutions.) Let $H \ge 0$. Let $p = p(\mu_0)$ with $\mu_0 \ge 0$ and $H \ge 0$, or let $1 with <math>\mu_0 > 0$ and H > 0. If $||u_0||_{\dot{H}^{\mu_0}(\mathbb{R}^n)}$ is sufficiently small, then the solution u obtained in (1) is a global solution, namely, $S = S_0$. And ubehaves as the free solution asymptotically.

Corollary 1.2. Let $\kappa > 0$, $\mu_0 = 1$. Let H and p satisfy $H(p - 1 - 4/n) \ge 0$ and p < 1 + 4/(n - 2). For any data $u_0 \in H^1(\mathbb{R}^n)$, the local solution u given by (1) in Theorem 1.1 is a global solution.

Corollary 1.3. *Let* $\kappa < 0$, $\mu_0 = 1$.

(1) Let $H \ge 0$, and $p \le 1 + 4/n$. For any data $u_0 \in H^1(\mathbb{R}^n)$, the local solution u given by (1) in Theorem 1.1 is a global solution, where we assume that $||u_0||_{L^2(\mathbb{R}^n)}$ is sufficiently small when p = 1 + 4/n.

(2) Let $H \leq 0$, and $p \geq 1 + 4/n$. For any radially symmetric data $u_0 \in H^1(\mathbb{R}^n)$ with $|||x|u_0(x)||_{L^2(\mathbb{R}^n)} < \infty$, and

$$\int_{\mathbb{R}^n} \frac{1}{2} |\nabla u_0(x)|^2 + \frac{\kappa |u_0(x)|^{p+1}}{p+1} dx < 0,$$

the local solution u given by (1) in Theorem 1.1 blows up in finite time. Namely, there exists $0 < S_1 < \infty$ such that $\lim_{s \nearrow S_1} \|\nabla u(s, \cdot)\|_{L^2(\mathbb{R}^n)} = \infty$. Let us consider the case s = n/2. We put

$$V(v) := \kappa \sum_{j \ge j_0} \frac{\alpha^j |v|^{\nu j+2}}{j! (\nu j+2)},$$
(1.4)

$$V'(v) = \kappa \sum_{j \ge j_0} \frac{\alpha^j}{j!} |v|^{\nu j} v = \kappa \left\{ \exp(\alpha |v|^{\nu}) - \sum_{0 \le j < j_0} \frac{\alpha^j}{j!} |v|^{\nu j} \right\} v,$$

where $\kappa \in \mathbb{C}$, $0 < \alpha < \infty$, $0 < \nu \leq 2$ and $j_0 \in \{1, 2, \dots\}$. Then (1.1) is rewritten as

$$\begin{cases} i\frac{\partial u}{\partial s}(s,x) \pm \frac{1}{2}\Delta u(s,x) \mp \frac{\kappa}{2}\sum_{j\geq j_0}\frac{\alpha^j}{j!}b(s)^{n\nu j/4-1}|u(s,x)|^{\nu j}u(s,x) = 0,\\ u(0,\cdot) = u_0(\cdot) \in H^{n/2}(\mathbb{R}^n). \end{cases}$$
(1.5)

Theorem 1.4. Let $n \ge 1$, $H \in \mathbb{R}$, $\kappa \in \mathbb{C}$. Let $\alpha > 0$, $0 < \nu \le 2$. There exist two admissible pairs $\{(q_j, r_j)\}_{j=1,2}$ with the following properties.

(1) (Local solutions.) For any initial data $u_0 \in H^{n/2}(\mathbb{R}^n)$, there exist S > 0 with $S \leq S_0$ and a unique time local solution u of (1.5) in $X^{n/2}([0,S))$, where we assume $\|u_0\|_{\dot{H}^{n/2}(\mathbb{R}^n)}$ is sufficiently small when $\nu = 2$.

(2) (Small global solutions.) Let $H \ge 0$ and $j_0 \ge 4/n\nu$. If $||u_0||_{L^2(\mathbb{R}^n)}$ is sufficiently small, then the solution u obtained in (1) is a global solution, namely, $S = S_0$. And u behaves as the free solution asymptotically.

For an admissible pair (q, r), we define the function space

$$Y([0,S)):=C([0,S),H^1(\mathbb{R}^2))\cap L^\infty((0,S),H^1(\mathbb{R}^2))\cap L^q((0,S),H^{1,r}(\mathbb{R}^2)).$$

Corollary 1.5. If $\kappa > 0$, H > 0, and the energy of u_0 satisfies

$$\int_{\mathbb{R}^2} |\nabla u_0(x)|^2 + \frac{\kappa}{\alpha} \left(e^{\alpha |u_0(x)|^2} - 1 - \alpha |u_0(x)|^2 \right) dx \le \frac{4\pi}{\alpha}, \tag{1.6}$$

then the local solution u is a global solution.