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This talk is based on a joint work with Saori Nakamori (Hiroshima University).

About a hundred years ago, Bernstein [2] proved the following theorem.

Theorem 1. [2] If f ∈ C2(R2) and the graph of z = z(x, y) is a minimal surface in

R3, then f is necessarily an affine function of x and y.

This theorem gives the characterization of entire solutions to the minimal surface

equation defined in the whole plane R2.

Many problems on the classification of entire solutions to PDEs have been extensively

studied. We list some results concerning Bernstein type theorems for fully nonlinear

equations. First, for Monge-Ampère equation, the following theorem is known.

Theorem 2. Let u ∈ C4(Rn) be a convex solution to

detD2u = 1 in Rn.

Then u is a quadratic polynomial.

Theorem 2 was proved by Jörgens [6] for n = 2, by Calabi [3] for n ≤ 5, and by

Pogorelov [9] for arbitrary n ≥ 2 (see also [4] for a simpler proof).

Later, Bao, Chen, Guan and Ji [1] extended this result to the so-called k-Hessian

equation of the form

Fk(D
2u) = Sk(λ1, . . . , λn) = 1 in Rn, (1)

for 1 ≤ k ≤ n. Here, for a C2 function u, λ1, . . . , λn denote the eigenvalues of the

Hessian matrix D2u, and Sk denotes the k-th elementary symmetric function, that is

Sk(λ1, . . . , λn) =
∑

1≤i1<···<ik≤n

λi1 · · ·λik . (2)

We note that Laplace operator ∆u and Monge-Ampère operator detD2u correspond

respectively to the special cases k = 1 and k = n in (2).
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Theorem 3. [1] Let 1 ≤ k ≤ n and u ∈ C4(Rn) be a strictly convex solution to (1).

Suppose that there exist constants A,B > 0 such that for all x ∈ Rn,

u(x) ≥ A|x|2 −B.

Then u is a quadratic polynomial.

Next, Gutiérrez and Huang [5] extended Theorem 2 to the parabolic analogue of

Monge-Ampère equation

−ut detD
2u = 1 in Rn × (−∞, 0]. (3)

Here a function u = u(x, t) : Rn × (−∞, 0] → R is said to be convex-monotone (resp.

strictly convex-monotone) if it is convex (resp. strictly convex) in x and non-increasing

(resp. decreasing) in t.

Theorem 4. [5] Let u ∈ C4,2(Rn × (−∞, 0]) be a convex-monotone solution to (3).

Suppose that there exist constants m1 ≥ m2 > 0 such that for all (x, t) ∈ Rn× (−∞, 0],

−m1 ≤ ut(x, t) ≤ −m2. (4)

Then u has the form u(x, t) = −C1t + p(x) where C1 > 0 is a constant and p is a

quadratic polynomial.

We note that Xiong and Bao [10] have recently obtained Bernstein type theorems for

more general parabolic Monge-Ampère equations, such as ut = (detD2u)1/n and ut =

log detD2u. However, as far as we know, Bernstein type theorems for parabolic fully

nonlinear equations are known only for the parabolic Monge-Ampère type equations.

In this talk, we are concerned with the parabolic analogue of k-Hessian equation of

the following form

ut = µ
(
Fk(D

2u)
1
k

)
in Rn × (−∞, 0], (5)

where µ : (0,∞) → R is a function. Here is a main result of this talk.

Theorem 5. [8] Let µ ∈ C2(0,∞), 1 ≤ k ≤ n and u ∈ C4,2(Rn× (−∞, 0]) be a strictly

convex-monotone solution to (5). Suppose that there exist constants m1 ≥ m2 > 0 such

that for all (x, t) ∈ Rn × (−∞, 0],

−m1 ≤ ut(x, t) ≤ −m2, (6)

and that there exist constants A,B > 0 such that for all x ∈ Rn,

u(x, 0) ≥ A|x|2 −B. (7)

Moreover, suppose that for all s ∈ (0,∞),

µ′(s) > 0, µ′′(s) ≤ 0, (8)



and that

µ−1([−m1,−m2]) = [r1, r2] (9)

for some positive constants r1, r2, where m1 and m2 are constants appeared in (6).

Then, u has the form u(x, t) = −mt + p(x) where m > 0 is a constant and p is a

quadratic polynomial.

Using Theorem 5, one can obtain Bernstein type theorems for various equations

including the following examples:

Example 1. (i) −utFk(D
2u) = 1 in Rn × (−∞, 0], which was obtained by Nakamori

and Takimoto [7] previously, if we set µ(s) = −s−k.

(ii) −utFk(D
2u)

1
k = 1 in Rn × (−∞, 0], if we set µ(s) = −1/s.

(iii) ut = logFk(D
2u) in Rn × (−∞, 0], if we set µ(s) = k log s.

(iv) We can also obtain Bernstein type theorem for

ut = Fk(D
2u)

1
k in Rn × (−∞, 0]. (10)

We remark that for k = 1, (10) reduces to the heat equation ut = ∆u which is well-

known.

The sketch of the proof of Theorem 5 and some open problems are given in the talk.
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du type elliptique, Comm. Inst. Sci. Math. Mech. Univ. Kharkov 15 (1915-17), 38–45.

[3] E. Calabi, Improper affine hypersurfaces of convex type and a generalization of a theorem
by K. Jörgens, Michigan Math. J. 5 (1958), 105–126.

[4] S.Y. Cheng and S.T. Yau, Complete affine hypersurfaces, Part I. The completeness of
affine metrics, Comm. Pure Appl. Math. 39 (1986), 839–866.

[5] C.E. Gutiérrez and Q. Huang, A generalization of a theorem by Calabi to the parabolic
Monge-Ampère equation, Indiana Univ. Math. J. 47 (1998), 1459–1480.
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