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We consider the initial value problem for the nonlinear Schrödinger equation

(0.1)

{
i∂tu+ 1

2∆u = λ |u|
2
n u, (t, x) ∈ R+ × Rn,

u (0, x) = u0 (x) , x ∈ Rn

in space dimensions n ≥ 4, where λ ∈ R. In the case of 1 ≤ n ≤ 3, asymptotic
behavior of small amplitude solutions to (0.1) has been studied in [1], [2], [3], [4],
[5]. However in the case of n ≥ 4, there are no results for asymptotic behavior
of solutions as far as we know. Our purpose in this talk is to show the sharp
asymptotics and time decay of solutions to (0.1) in the uniform norm for higher
space dimensions n ≥ 4.

We introduce some function spaces and notations. Let L∞ ∩ C denote the
bounded continuous function space with the norm ∥ϕ∥L∞∩C = sup

x∈Rn

|ϕ (x)| . The

homogeneous Sobolev space Ḣm is defined by

Ḣm =
{
ϕ; ∥ϕ∥Ḣm =

∥∥∥(−∆)
m/2

ϕ
∥∥∥
L2

< ∞
}
,

m ≥ 0, where ∥ϕ∥2L2 =
∫
Rn |ϕ (x)|2 dx. Denote ⟨t⟩ =

√
1 + t2. To state our results,

we use the function space

X = {u;FU (−t− 1)u ∈ C ([0,∞) ;Y) , ∥u∥X < ∞} ,

where Y = L∞ ∩C ∩ Ḣσ, n
2 < σ < n

2 + 1 and

∥u∥X = sup
0≤t<∞

∥FU (−t− 1)u(t)∥L∞∩C

+(t+ 1)
−γ ∥FU (−t− 1)u(t)∥Ḣσ

with a small γ satisfying 1
n

(
σ − n

2

)
> γ > 0. We note here that the Hölder class of

order σ − n
2 is included in Y.

Theorem 0.1. We assume that the initial data satisfy
ρ

2
≤ inf

ξ∈Rn
|û0 (ξ)| ≤ ∥û0∥L∞∩C ≤ ρ

and e
i
2 |ξ|

2

û0 ∈ L∞ ∩C ∩ Ḣ
σ
, ∥e i

2 |ξ|
2

û0∥Ḣσ ≤ ρ2 with n
2 < σ < n

2 + 1. Then there
exists a ρ0 > 0 such that the Cauchy problem (0.1) has a unique solution u ∈ X for
all 0 < ρ ≤ ρ0. Moreover the time decay estimate

1

5
ρ (t+ 1)

−n
2 ≤ inf

x∈Rn
|u(t)| ≤ ∥u(t)∥L∞∩C ≤ 7

5
ρ (t+ 1)

−n
2

holds for all t > 0.
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Remark 0.1. Typical example of the data could be the following

û0 (ξ) = e−
i
2 |ξ|

2

ρ

(
1− ρ2

⟨ξ⟩

)
since by a direct calculation∥∥∥e i

2 |ξ|
2

û0

∥∥∥
Ḣσ

=

∥∥∥∥ρ(1− ρ2

⟨ξ⟩

)∥∥∥∥
Ḣσ

≤ Cρ3 ≤ ρ2

and
ρ− ρ3 ≤ inf

ξ∈Rn
|û0 (ξ)| ≤ ∥û0∥L∞∩C ≤ ρ.

Theorem 0.2. Let u be the solution constructed in Theorem 0.1. Then there exists
a unique final state û+ ∈ L∞∩C∩Ḣβ , n

2 < β < σ < n
2+1, such that the asymptotics∥∥∥∥u (t)− e

i|x|2
2(t+1)

−inπ
4 (t+ 1)

−n
2 e−iλ|û+( x

t+1 )|
2
n log(t+1)û+

(
x

t+ 1

)∥∥∥∥
L∞∩C

≤ C (t+ 1)
−n

2 − 2
n (δ−γ)

(
ρ2 + ρ(

2
n+2) 2

n+1 log (t+ 1)
)

holds for all t > 0 and

1

5
ρ ≤ inf

ξ∈Rn
|û+ (ξ)| ≤ ∥û+∥L∞ ≤ 7

5
ρ,

where δ ∈
(
0, 1

2

(
σ − n

2

))
, 0 < γ < σ−β

n .
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