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LetΩ be a two-dimensional domain. We are concerned with the Euler equations onΩ in the
vorticity formulation:

(1) ωt + (u · ∇)ω = 0, ω(x, 0) = ω0(x).

Hereω is the fluid vorticity, andu is the velocity of the flow determined by the Biot-Savart law.
We impose the no flow condition for the velocity at the boundary:u · n = 0 on∂Ω, wheren is
the unit normal vector on the boundary. This implies the formula:

u(x, t) = ∇⊥
∫
Ω

GΩ(x, y)ω(y, t)dy,

whereGΩ is the Green function for the Dirichlet problem inΩ and∇⊥ = (∂x2,−∂x1). The
movement of a fluid particle, placed at a pointX ∈ Ω, is defined as the solution of the Cauchy
problem

dγX(t)
dt

= u(γX(t), t), γX(0) = X,

and the vorticityω is advected by

ω(x, t) = ω0(γ
−1
x (t)).

Global regular solutions to the Euler equatins (1) in smooth bounded domains were proved
by Wolibner [9] and Hölder [2] and there are huge literature on this problem. Recently, there are
growing interests in the study of (1) in nonsmooth domains. Existence of global weak solutions,
with u ∈ L∞(R+; L2(Ω)) andω ∈ L∞(R+×Ω), was proved by Taylor [8] for convex domains and
by Gèrard-Varet and Lacave [1] for more general (possibly not convex) domains. Uniqueness of
the solution to the Euler equations (1) on domains with corners was shown by Lacave, Miot and
Wang [7] for acute angles. For obtuse corners, Lacave [6] proved uniqueness of the solution
under the assumption that the support of the vorticity never intersects the boundary. We are
concerned with the question how fast the maximum of the gradient of the vorticity can grow as
t → ∞. WhenΩ is a smooth bounded domain, the best known upper bound on the growth is
double-exponential [11], while the question whether such upper bound is sharp had been open
for a long time. In 2014, Kiselev and Sverak [4] answered the question affirmatively for the
caseΩ is a disk. They gave an example of the solution growing with double exponential rate.
For a general domain withC3-boundary see [10]. On the other hand, Kiselev and Zlatos [5]
considered the 2D Euler flows on some bounded domain with certain cusps. They showed that
the gradient of vorticity blows up at the cusps in finite time. These solutions are constructed by
imposing certain symmetries on the initial data, which leads to ahyperbolic flow scenarionear
a stagnation point on the boundary. More precisely, by the hyperbolic flow scenario, particles
on the boundary (near the stagnation point) head for the stagnation point for all time. Moreover
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the relation between this scenario and the geometry of the boundary plays a crucial role in the
double exponential growth or the formation of the singularity. Thus it would be an interesting
question to ask how the geometry of the boundary affects the growth of the solution. In [3],
Miura, Yoneda and the author considered the Euler equations (1) on the unit square and under a
simple symmetry condition the growth of the Lipschitz constant of the vorticity on the boundary
is shown to be at most single exponential at the stagnation point. In this talk, we are concerned
with more general cases; the growth of the Lipschitz norm of the vorticity in bounded domains
with general corners or cusps.

Definition 1. (i) Let Ω ⊂ R2 be a simply connected bounded domain 0< θ < 2π with θ , π.
We say that∂Ω has a corner of angleθ (0 < θ < 2π) at ξ ∈ ∂Ω, if there exist constantsr0 > 0
and 0≤ θ0 < 2π such that,Ω ∩ B(ξ, r0) = {x = (x1, x2) : θ0 < arg(x− ξ) < θ0 + θ} ∩ B(ξ, r0).
(ii) Let Ω be a domain with corners given in (i). We sayΩ is symmetric with respect to the
corner ifθ0 = − θ2 andΩ is symmetric along thex1-axis.

Without loss of generality, by translation, rotation and scaling, we may assume that

(2)

 diam(Ω) < 1 and 0∈ ∂Ω,

∂Ω has a corner of angleθ at 0 withθ0 = 0 in Definition 1.

We now focus on the growth of the Lipschitz constant ofω with 0 ∈ ∂Ω

sup
x∈Ω

|ω(x, t) − ω(0, t)|
|x| .

Our first result concerns the domain with the corner with the angleθ ≤ π/2.

Theorem 2. LetΩ be a simple connected domain satisfying(2) andω0 be a Lipschitz function.
(a) For 0 < θ < π2, there exists a constant C> 0 depending only onΩ such that

sup
x∈Ω

|ω(x, t) − ω(0, t)|
|x| ≤ ∥ω0∥LipeC∥ω0∥∞t for t > 0.

Moreover there exist an initial dataω0 and a constant C> 0 such that

sup
x∈Ω

|ω(x, t) − ω(0, t)|
|x| ≥ CeCt for t > 0.

(b) For θ = π2, there exists an initial dataω0 with ∥ω0∥Lip > 1 such that

sup
x∈Ω

|ω(x, t) − ω(0, t)|
|x| ≥ ∥ω0∥C exp(Ct)

Lip for t > 0.

We next consider the caseθ > π/2. In this case, we will see that the vorticity can lose
continuity instantaneously.

Theorem 3. LetΩ be a simply connected bounded domain satisfying(2). If π/2 < θ < π, there
are an initial dataω0 ∈ C(Ω) and its solutionω such thatω(t) instantaneously loses continuity
in space. Furthermore, ifπ < θ < 2π andΩ is symmetric with respect to the corner, there also
existω0 ∈ C(Ω) and its solutionω such thatω(t) instantaneously loses continuity.

Next we consider domains with cusps. Let

Ω1 = {(x1, x2) : x2 > 0, (x1 − 1/2)2 + x2
2 < 1/4, x2

1 + (x2 − 1/2)2 > 1/4}.
Note thatΩ1 has an outward-pointing cusp at 0.
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Theorem 4. Let ω0 be a Lipschitz function onΩ1. Consider the Euler equations(1) on Ω1.
There exists a constant C> 0 such that

sup
x∈Ω

|ω(x, t) − ω(0, t)|
|x| ≤ ∥ω0∥Lip(1+C∥ω0∥∞t) for t > 0.

Moreover there exist an initial dataω0 and a constant C> 0 such that

sup
x∈Ω

|ω(x, t) − ω(0, t)|
|x| ≥ 1+ t for t > 0.

Theorem 5. There exists a domainΩwith an outward-pointing cusp at0 such that the following
statement holds: Letω0 be a Lipschitz function onΩ. There exists a constant C> 0 such that

sup
x∈Ω

|ω(x, t) − ω(0, t)|
|x| ≤ ∥ω0∥Lip(1+C log(1+ ∥ω0∥∞t)) for t > 0.

Moreover there exist an initial dataω0 and a constant C> 0 such that

sup
x∈Ω

|ω(x, t) − ω(0, t)|
|x| ≥ 1+ log(1+ t) for t > 0.
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