THE GROWTH OF THE VORTICITY GRADIENT FOR THE
TWO-DIMENSIONAL EULER FLOWS ON NONSMOOTH DOMAINS

TSUBASA ITOH

Let Q be a two-dimensional domain. We are concerned with the Euler equatiddsrotine
vorticity formulation:

(2) wi+U-Vo=0, w(X0)=wyX).

Herew is the fluid vorticity, andu is the velocity of the flow determined by the Biot-Savart law.
We impose the no flow condition for the velocity at the boundaryn = 0 on9dQ, wheren is
the unit normal vector on the boundary. This implies the formula:
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whereGq, is the Green function for the Dirichlet problem & and V*+ = (dy,, —dx,). The
movement of a fluid particle, placed at a po¥e Q, is defined as the solution of the Cauchy

problem
dyx(t)

dt
and the vorticityw is advected by

w(X,1) = wolyx (1))-

Global regular solutions to the Euler equatidyifi smooth bounded domains were proved
by Wolibner B] and Holder [2] and there are huge literature on this problem. Recently, there are
growing interests in the study of)in nonsmooth domains. Existence of global weak solutions,
with u € L*(R,; L2(Q)) andw € L=(R, x Q), was proved by Taylord] for convex domains and
by Gerard-Varet and Lacavé]for more general (possibly not convex) domains. Uniqueness of
the solution to the Euler equatioriy on domains with corners was shown by Lacave, Miot and
Wang [7] for acute angles. For obtuse corners, Lacé&ijefoved uniqueness of the solution
under the assumption that the support of the vorticity never intersects the boundary. We are
concerned with the question how fast the maximum of the gradient of the vorticity can grow as
t —» o. WhenQ is a smooth bounded domain, the best known upper bound on the growth is
double-exponentiall[l], while the question whether such upper bound is sharp had been open
for a long time. In 2014, Kiselev and Sveral] pnswered the questiorffamatively for the
caseQ is a disk. They gave an example of the solution growing with double exponential rate.
For a general domain wit@3-boundary seel[d]. On the other hand, Kiselev and Zlatd§ |
considered the 2D Euler flows on some bounded domain with certain cusps. They showed that
the gradient of vorticity blows up at the cusps in finite time. These solutions are constructed by
Imposing certain symmetries on the initial data, which leadshgpeerbolic flow scenarioear
a stagnation point on the boundary. More precisely, by the hyperbolic flow scenario, particles
on the boundary (near the stagnation point) head for the stagnation point for all time. Moreover
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the relation between this scenario and the geometry of the boundary plays a crucial role in the
double exponential growth or the formation of the singularity. Thus it would be an interesting
question to ask how the geometry of the bounddfgcs the growth of the solution. 113]]

Miura, Yoneda and the author considered the Euler equatigrms (the unit square and under a
simple symmetry condition the growth of the Lipschitz constant of the vorticity on the boundary
is shown to be at most single exponential at the stagnation point. In this talk, we are concerned
with more general cases; the growth of the Lipschitz norm of the vorticity in bounded domains
with general corners or cusps.

Definition 1. (i) Let Q c R? be a simply connected bounded domair @ < 27 with 6 # 7.
We say thabQ has a corner of angle (0 < 8 < 2r) até € 0Q, if there exist constantg > 0
and 0< 6 < 27 such thatQ N B(&,rg) = {X = (X1, X2) : O < argX — &) < 6 + 6} N B(&, ro).

(i) Let Q be a domain with corners given in (i). We sgyis symmetric with respect to the
corner if6y = —g andQ is symmetric along the&;-axis.

Without loss of generality, by translation, rotation and scaling, we may assume that

@ { diam@) < 1 and Oe 4Q,

0Q has a corner of anglkeat 0 withy = 0 in Definition 1
We now focus on the growth of the Lipschitz constantokith 0 € 9Q

X 1) — w(0,t

suplete ) ~ (0.0
XeQ |X|

Our first result concerns the domain with the corner with the afigler/2.

Theorem 2. LetQ be a simple connected domain satisfy{Agandw, be a Lipschitz function.
(@) For0 < 6 < Z, there exists a constant € 0 depending only o such that

X, 1) — w(0,t
suplw( )~ .1 < |lwollLip€"=t  for t > 0.
XeQ |X|

Moreover there exist an initial datag and a constant G 0 such that
X 1) — w(0,t
suplC D =@l | o
XeQ |X|
(b) For 6 = 7, there exists an initial dataxg with [lwollLip > 1 such that

X 1) — w(0,t
sup! )|X|“’( )'znwonﬁgxpm fort> 0,

fort > 0.

XeQ
We next consider the cage> n/2. In this case, we will see that the vorticity can lose
continuity instantaneously.

Theorem 3. LetQ be a simply connected bounded domain satisf{glf 7/2 < 6 < &, there
are an initial datawo € C(Q) and its solutiornw such thatw(t) instantaneously loses continuity
in space. Furthermore, it < 6 < 27 andQ is symmetric with respect to the corner, there also
existwy € C(Q) and its solutionw such thaw(t) instantaneously loses continuity.

Next we consider domains with cusps. Let
Q1 = {(X1, %) : X2 > 0, (X1 — 1/2 + X3 < 1/4, X2 + (X2 — 1/2)* > 1/4).

Note thatQ; has an outward-pointing cusp at 0.
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Theorem 4. Let wg be a Lipschitz function o®;. Consider the Euler equation4) on Q;.
There exists a constant £ 0 such that

X, 1) — w(0,t
suplte ) = w(O.D)
XeQ |X|
Moreover there exist an initial datag and a constant G 0 such that
X, 1) — w(0,t
suplex0 —©©.0)
XeQ |X|
Theorem 5. There exists a domaf@ with an outward-pointing cusp &such that the following
statement holds: Leby be a Lipschitz function of2. There exists a constant £ 0 such that
X, 1) — w(0,t
suplex0 —@0.0)
XeQ |X|
Moreover there exist an initial datag and a constant G 0 such that
X 1) — w(0,t
Suplw( ) — w(0, 1)

XeQ |X|

< Jlwollip(1 + Cllwollt)  fort > 0.

>1+t fort>0.

< lwollLip(1 + Clog(1 + [|wollt))  fort > 0.

>1+log(l+t) fort>0.
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