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1 Introduction

This talk is concerned with an Allen-Cahn equation with non-decreasing constraint,

(irAC) up = (Au - W’(u)) in Q x (0,00),

+
where W’ (u) = u® — ku (with k > 0) is the derivative of a double-well potential W (u) simply
given by

and where (-)4 stands for the positive-part function and €2 is a smooth bounded domain of
RY. Equation (irAC) is a constrained (more precisely, a strongly irreversible) variant of the
celebrated Allen-Cahn equation,

(AC) ug = Au— W' (u) in Q x (0,00),

which has been well studied and is known for a phase-separation model. Moreover, (irAC) also
appears in a special setting of a phase field model of crack-propagation, where u(z,t) stands
for the phase parameter describing the degree of damage and therefore it is supposed to be
non-decreasing. Furthermore, (AC) and (irAC) share a common Lyapunov energy functional,

Flu) = ;/Q|Vu]2dx+/QW(u(m))dx

for u € H}(Q) N L*Q). Namely, t — F(u(t)) is non-increasing along the evolution of each
solution u(t) to (AC) and (irAC). Here we remark that (AC) can be formulated as an L2-
gradient flow of F, that is,

ug(t) = —F'(u(t)) in L3(Q), 0<t< oo,
On the other hand, (irAC) is rewritten as a constrained gradient flow,

w(t) = ( - f’(u(t))) in L2(Q), 0<t< oo,
+
which is not in a divergence form and often classified as a fully nonlinear PDE.
Due to the presence of the positive-part function in (irAC), u(x, t) is non-decreasing in time
for a.e. x € Q. In particular, if ug > 0 a.e. in , then u(z,t) > ug(z) for a.e. z € Q and t > 0,
which also implies

lu®)lzr) = luollzr) forall t>0 and p € [1,0q].

Hence there exists no absorbing set in any LP spaces, and therefore, no global attractor exists
in LP(2). This fact exhibits a clear contrast to the classical Allen-Cahn equation (AC), which
always admits a global attractor in LP(£2). Moreover, it can be also regarded as a conclusion of
a lack of full energy-dissipation for (irAC). On the other hand, u(z,t) never evolves at z € Q
where Au(z,t) — W'(u(z,t)) is negative. Therefore, one cannot expect smoothing-effect for
(irAC) in a usual sense. The main purpose of this talk is to exhibit how one can find out
partial energy-dissipation and smoothing effect for (irAC).
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2 Main results

Let us consider the Cauchy-Dirichlet problem (P) for (irAC),

up = <Au - W/(u)>+ in Q x (0,00),

uloo =0,  uli—o = uo.

Here and henceforth, we are concerned with L? solutions of (irAC), that is,
~ Definition (Solution to (irAC)) N

For T > 0, a function u € C([0,T]; L?(Q)) is called a solution of (irAC) on [0,T], if the
following conditions are all satisfied:

(1) u € WL2(5,T; L3(Q)), C([6, T); HY(Q) N LA(Q)) N L2(8,T; H*(Q)) N LS(6, T; L5(Q))
forany 0 < § < T < o0,

(ii) it holds that

up = (Au - W’(u)) for a.e. (x,t) € Q x (0, 00). (1)
+
- J
Our main results read,
~ Theorem 1 (Existence and partial smoothing effect [1]) ~
We set

D, = {u e H2(Q) N HHQ) N LY(Q): [|[(Au — W (u))_|2 < r}
for each r > 0. Then
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(i) Let ug belong to the closure DTL of D, in L?*(Q). Then (P) admits a solution
u = u(z,t) on [0,T] satisfying
u e L0, T; Hy () N LY(0,T; LY(%)),
u(t) € D, for all t e (0,T]

for any 0 < T < oo.

L
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(ii) If ug belongs to the closure DTHéﬁ of D, in H}(Q) N L*(Q), then it further holds

that
u € WH2(0,T; L*()) 0 L2(0,T; H*(Q2)) N L8(0, T; L8(2)),
u € C([0,T]; Hy(Q) N L*(Q))

for any 0 < T' < 0.

(iil) If ugp € H?(Q) N H}(Q) N L5(Q), then u € Cyu([0,T]; H>(2) N L5(Q)) and u; €
L2(0,T; HY(Q)) for any 0 < T < oo.
N J




~ Theorem 2 (Partial energy-dissipation [1]) N

Fix r > 0 and denote by u(t) = u(-,t) the solution to (P) constructed in Theorem 1. Then
there exist constants C, and C such that the following (i)—(iii) hold true:

— gl 4
(i) For any ug € DTH0 e , it holds that

C(p(0) +1
6(1) < Ot e 0(0), | Au(t) — W ()3 < ¢, + TADTL,
where ¢(t) := (1/2)||Vu(t)||3 + (1/4)||u(t)||3, for all t > 0.
(ii) Fix up € H?(Q) N HL(Q2) N L(). For any & > 0 there exists 7. > 0 such that
1Au(t) = W’ (u(t)]13 < [[(Auo — W' (uo))- |3 + e
for all t > 7.
- J
~ Theorem 3 (Reformulation of (irAC) as an obstacle problem [1]) —
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For any ug € D" , (P) admits a solution u = u(z,t) which also solves

u>ug, u>Au—W'(u) in Q x (0,00),
(OP) (u—ug) (ug — Au+ W'(u)) =0 in Q x (0,00),
ulpn =0, ult=o = uo.

Moreover, such a solution to (P) as well as (OP) is uniquely determined by ug € ELZ. )
-

Equation (irAC) is classified as a fully nonlinear parabolic equation, which is formulated in
a general form u; = F(D?u) with a nonlinear function F' and the Hessian matrix D?u. Here
we shall reformulate the equation as a generalized gradient flow (of subdifferential type), which
is fitter to distributional frameworks and energy techniques. By applying the (multivalued)
inverse mapping a(-) of (- )4+ to both sides, (irAC) is reduced to

(irAC)pN a(uy) 3 Au—W'(u) in Q x (0,00).
The inverse mapping « of (- )4 can be decomposed as follows:
0 if s>0
a(s) = s+ 0l x0)(8), Oljgsc)(s) =14 (00,0 if s=0 for s€eR, (2)
] if s<0

where 01 o) stands for the subdifferential of the indicator function I oy over the half-line
[0,4+00). The Cauchy-Dirichlet problem (P) for (irAC) is equivalently given as

ug+n—Au+Wiu) =0, 1edly)(u) in Qx(0,00), (3)
u=0 on 0% x (0,00), (4)
u = up in Q. (5)
Furthermore, comparing (3) with (irAC), one can immediately find the relation,
n=—(du-Ww) . (6)
where (-)_ stands for the negative part function, i.e., (s)_ := max{—s,0} > 0.
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