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1 Introduction

This talk is concerned with an Allen-Cahn equation with non-decreasing constraint,

(irAC) ut =
(
∆u−W ′(u)

)
+

in Ω× (0,∞),

where W ′(u) = u3 − κu (with κ > 0) is the derivative of a double-well potential W (u) simply
given by

W (u) :=
1

4
u4 − κ

2
u2

and where ( · )+ stands for the positive-part function and Ω is a smooth bounded domain of
RN . Equation (irAC) is a constrained (more precisely, a strongly irreversible) variant of the
celebrated Allen-Cahn equation,

(AC) ut = ∆u−W ′(u) in Ω× (0,∞),

which has been well studied and is known for a phase-separation model. Moreover, (irAC) also
appears in a special setting of a phase field model of crack-propagation, where u(x, t) stands
for the phase parameter describing the degree of damage and therefore it is supposed to be
non-decreasing. Furthermore, (AC) and (irAC) share a common Lyapunov energy functional,

F(u) :=
1

2

∫
Ω
|∇u|2 dx+

∫
Ω
W (u(x)) dx

for u ∈ H1
0 (Ω) ∩ L4(Ω). Namely, t 7→ F(u(t)) is non-increasing along the evolution of each

solution u(t) to (AC) and (irAC). Here we remark that (AC) can be formulated as an L2-
gradient flow of F , that is,

ut(t) = −F ′(u(t)) in L2(Ω), 0 < t < ∞.

On the other hand, (irAC) is rewritten as a constrained gradient flow,

ut(t) =
(
−F ′(u(t))

)
+

in L2(Ω), 0 < t < ∞,

which is not in a divergence form and often classified as a fully nonlinear PDE.
Due to the presence of the positive-part function in (irAC), u(x, t) is non-decreasing in time

for a.e. x ∈ Ω. In particular, if u0 ≥ 0 a.e. in Ω, then u(x, t) ≥ u0(x) for a.e. x ∈ Ω and t > 0,
which also implies

∥u(t)∥Lp(Ω) ≥ ∥u0∥Lp(Ω) for all t > 0 and p ∈ [1,∞].

Hence there exists no absorbing set in any Lp spaces, and therefore, no global attractor exists
in Lp(Ω). This fact exhibits a clear contrast to the classical Allen-Cahn equation (AC), which
always admits a global attractor in Lp(Ω). Moreover, it can be also regarded as a conclusion of
a lack of full energy-dissipation for (irAC). On the other hand, u(x, t) never evolves at x ∈ Ω
where ∆u(x, t) − W ′(u(x, t)) is negative. Therefore, one cannot expect smoothing-effect for
(irAC) in a usual sense. The main purpose of this talk is to exhibit how one can find out
partial energy-dissipation and smoothing effect for (irAC).
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2 Main results

Let us consider the Cauchy-Dirichlet problem (P) for (irAC),

ut =
(
∆u−W ′(u)

)
+

in Ω× (0,∞),

u|∂Ω = 0, u|t=0 = u0.

Here and henceforth, we are concerned with L2 solutions of (irAC), that is,

Definition (Solution to (irAC))� �
For T > 0, a function u ∈ C([0, T ];L2(Ω)) is called a solution of (irAC) on [0, T ], if the
following conditions are all satisfied:

(i) u ∈ W 1,2(δ, T ;L2(Ω)), C([δ, T ];H1
0 (Ω) ∩ L4(Ω)) ∩ L2(δ, T ;H2(Ω)) ∩ L6(δ, T ;L6(Ω))

for any 0 < δ < T < ∞,

(ii) it holds that

ut =
(
∆u−W ′(u)

)
+

for a.e. (x, t) ∈ Ω× (0,∞). (1)� �
Our main results read,

Theorem 1 (Existence and partial smoothing effect [1])� �
We set

Dr :=
{
u ∈ H2(Ω) ∩H1

0 (Ω) ∩ L6(Ω): ∥(∆u−W ′(u))−∥22 ≤ r
}

for each r > 0. Then

(i) Let u0 belong to the closure Dr
L2

of Dr in L2(Ω). Then (P) admits a solution
u = u(x, t) on [0, T ] satisfying

u ∈ L2(0, T ;H1
0 (Ω)) ∩ L4(0, T ;L4(Ω)),

u(t) ∈ Dr for all t ∈ (0, T ]

for any 0 < T < ∞.

(ii) If u0 belongs to the closure Dr
H1

0∩L4

of Dr in H1
0 (Ω) ∩ L4(Ω), then it further holds

that

u ∈ W 1,2(0, T ;L2(Ω)) ∩ L2(0, T ;H2(Ω)) ∩ L6(0, T ;L6(Ω)),

u ∈ C([0, T ];H1
0 (Ω) ∩ L4(Ω))

for any 0 < T < ∞.

(iii) If u0 ∈ H2(Ω) ∩ H1
0 (Ω) ∩ L6(Ω), then u ∈ Cw([0, T ];H

2(Ω) ∩ L6(Ω)) and ut ∈
L2(0, T ;H1

0 (Ω)) for any 0 < T < ∞.� �
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Theorem 2 (Partial energy-dissipation [1])� �
Fix r > 0 and denote by u(t) = u(·, t) the solution to (P) constructed in Theorem 1. Then
there exist constants Cr and C such that the following (i)–(iii) hold true:

(i) For any u0 ∈ Dr
H1

0∩L4

, it holds that

ϕ(t) ≤ Cr + e−2κtϕ(0), ∥∆u(t)−W ′(u(t))∥22 ≤ Cr +
C(ϕ(0) + 1)

t
,

where ϕ(t) := (1/2)∥∇u(t)∥22 + (1/4)∥u(t)∥44, for all t ≥ 0.

(ii) Fix u0 ∈ H2(Ω) ∩H1
0 (Ω) ∩ L6(Ω). For any ε > 0 there exists τε > 0 such that

∥∆u(t)−W ′(u(t))∥22 ≤ ∥(∆u0 −W ′(u0))−∥22 + ε

for all t ≥ τε.� �
Theorem 3 (Reformulation of (irAC) as an obstacle problem [1])� �
For any u0 ∈ Dr

L2

, (P) admits a solution u = u(x, t) which also solves

(OP)


u ≥ u0, ut ≥ ∆u−W ′(u) in Ω× (0,∞),

(u− u0) (ut −∆u+W ′(u)) = 0 in Ω× (0,∞),

u|∂Ω = 0, u|t=0 = u0.

Moreover, such a solution to (P) as well as (OP) is uniquely determined by u0 ∈ Dr
L2

.� �
Equation (irAC) is classified as a fully nonlinear parabolic equation, which is formulated in

a general form ut = F (D2u) with a nonlinear function F and the Hessian matrix D2u. Here
we shall reformulate the equation as a generalized gradient flow (of subdifferential type), which
is fitter to distributional frameworks and energy techniques. By applying the (multivalued)
inverse mapping α( · ) of ( · )+ to both sides, (irAC) is reduced to

(irAC)DN α(ut) ∋ ∆u−W ′(u) in Ω× (0,∞).

The inverse mapping α of ( · )+ can be decomposed as follows:

α(s) = s+ ∂I[0,∞)(s), ∂I[0,∞)(s) =


0 if s > 0

(−∞, 0] if s = 0

∅ if s < 0

for s ∈ R, (2)

where ∂I[0,∞) stands for the subdifferential of the indicator function I[0,∞) over the half-line
[0,+∞). The Cauchy-Dirichlet problem (P) for (irAC) is equivalently given as

ut + η −∆u+W ′(u) = 0, η ∈ ∂I[0,∞)(ut) in Ω× (0,∞), (3)

u = 0 on ∂Ω× (0,∞), (4)

u = u0 in Ω. (5)

Furthermore, comparing (3) with (irAC), one can immediately find the relation,

η = −
(
∆u−W ′(u)

)
−
, (6)

where ( · )− stands for the negative part function, i.e., (s)− := max{−s, 0} ≥ 0.
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