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1 Introduction

This talk is based on the joint work [9] with S. Cuccagna (Trieste University).
In this talk we consider a nonlinear Schrödinger equation (NLS)

i∂tu = −∆u+ g(|u|2)u, (t, x) ∈ R× R3, (1.1)

with u(0) = u0 ∈ H1
rad(R3,C) := {u ∈ H1(R3,C) | u is radially symmetric} and g ∈ C∞([0,∞),R)

with g(0) = 0 and |g(n)(s)| ≤ Cns
p−n in s ≥ 1 for some p < 2 and Cn > 0 for all n ∈ N ∪ {0}.

We assume the existence of a one parameter family of ground states, i.e. there exists an open
interval O ⊂ (0,∞) and a C2 map

O ∋ ω 7→ ϕω ∈ H1
rad(R3,R), (1.2)

s.t. ϕω are positive and solve

0 = −∆ϕω + ωϕω + g(ϕ2ω)ϕω. (1.3)

Notice that eiωtϕω are solutions of (1.1), which are also called ground states. We further assume
that the map ω 7→ ∥ϕω∥L2 has a nondegenerate local minimum, i.e.

∃ω∗ ∈ O s.t. q′(ω∗) = 0 and q′′(ω∗) > 0, where q(ω) :=
1

2
∥ϕω∥2L2(R3,C). (1.4)

Remark 1.1. The above hypotheses have been numerically verified for various equations involving
saturated nonlinearities such as g(s) = s

1+s , relevant in optics. Other examples are in Buslaev–
Grikurov [2]. For an analytical result for double power nonlinearity in one dimension, see [12].

By (1.4), we have q′(ω) < 0 for ω ∈ (ω∗ − δ, ω∗) and q′(ω) > 0 for ω ∈ (ω∗, ω∗ + δ) for some
δ > 0. It is well known that under standard nondegeneracy assumption, the ground state eiωtϕω is
orbitally stable (resp. unstable) if q′(ω) > 0 (q′(ω) < 0), see e.g. [10]. Therefore, ω∗ is the critical
frequency dividing the stable and unstable ground states. Comech–Pelinovsky [4] proved that this
critical ground state eiω∗tϕω∗ is orbitally unstable.

Marzuola et al. [13] considered the framework of Comech–Pelinovsky [4] and developed a
systematic numerical exploration of solutions of both the finite dimensional approximation and of
the full NLS. While observing the patterns of Comech–Pelinovsky [4], Marzuola et al. [13] identified
another class of initial data near the minimal mass ground state eiω∗tϕω∗ . The corresponding
solutions look like eiϑ(t)ϕω(t) locally in space with ω(t) displaying an oscillating motion, which
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appears periodic. A similar pattern had previously been observed also by Buslaev–Grikurov [2, fig.
2 case α = 0.5].

Our aim is to rigorously justify the observation of Marzuola et al. [13] and provide a theoretical
explanation of the oscillation phenomena. Very roughly, our main result is the following.

Theorem 1.2 (Cuccagna-M. [9]). For any M ∈ N, M ≥ 2, there exists an open set UM ⊂ H1
rad

near ϕω∗ contained in {u ∈ H1
rad | Q(u) > Q(ϕω∗)} s.t. the solution of (NLS) with initial datum

u0 ∈ UM can be expressed as

u(t) = eiθ(t)ϕω(t) +O(ϵ3/2), t ∈ [0, T ]

where ϵ :=
√
Q(u)−Q(ϕω∗) and T = ϵ−M . Moreover, if we set ω = ω+ + ϵζ, where ω+ is the

solution of Q(ϕω) = Q(u) with ω+ > ω∗, we have

d2

dt2
ζ = −A−1

(√
2q′′(ω∗)ζ +

1

2
q′′(ω∗)ζ

2

)
+O(ϵ).

Here, Q(u) := 1
2∥u∥

2
L2

Remark 1.3. The open sets UM ⊂ H1
rad(R3,C) are not neighborhoods of ϕω∗ .

We now explain the strategy of the proof. For problems related to the dynamics near ground
states, following the classical works such as [19, 16], it is quite natural to introduce coordinates
which are in part discrete and in part continuous coordinates and which are related to the spectral
decomposition of the linearization of (1.1). For example, when we study the asymptotic stability of
ground states (i.e. showing solutions near ground states decompose to ground state and linear wave)
for the case q′(ω) > 0, we can decompose the solution u(t) as

u(t) = eiϑ(t)(ϕω(t) + r(t)).

Here, r(t) is symplectic orthogonal to the kernel of the linearized operator. If we assume that there
are no internal modes (non-zero discrete spectrum) for the linearized operator, then (ϑ, ω) can be
viewed as the discrete coordinates and r as the continuous coordinate, with (ϑ, ω, r) a complete
system of independent coordinates. Therefore, the dynamics of u(t) reduces to the dynamics of ϑ(t),
ω(t) and r(t). As in [7, 1] it is natural to replace the coordinate system (ϑ, ω, r) with (ϑ,Q, r), where
Q = 1

2∥u∥
2
L2 is a first integral of motion, and by an elementary application of Noether’s principle,

to decrease the number of coordinates, reducing to a NLS–like equation on r. Then the proof of
asymptotic stability results from the proof of the scattering of r.

The above argument, is based on the fact that the generalized kernel of the linearized operator
is 2 dimensional, which is a consequence of q′(ω) ̸= 0. In the case q′(ω) = 0 the generalized kernel
becomes 4 dimensional, and instead of the previous ansatz with coordinates (ϑ, ω, r), we have

u(t) = eiϑ(t)
(
ϕω(t) + λ(t)ψ3 + µ(t)ψ4 + r(t)

)
,

where ψ3 and ψ4 are additional generalized eigenfunctions. Thus, under the assumption that there
exist no internal modes, our problem reduces to the study of the dynamics of (ϑ, ω, λ, µ, r). Unlike in
the case q′(ω) ̸= 0, we cannot replace ω by Q. But we can replace µ by Q. Then, by an elementary
application of Noether’s principle, we are left with (ω, λ, r). The equations for modulation parameters
(ω, λ) have already been studied in the literature, see (4.11) in [4] or (3.5) in [13], but are not well
understood. Here we add to their understanding by following an approach initiated in [6]. That
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is, using the Hamilton structure of NLS (1.1), we move to a Darboux system of coordinates. In
Darboux coordinates we have

ω̇ = A−1∂λE, λ̇ = −A−1∂ωE

where E is the energy (Hamiltonian) of the NLS and A = A(ω) > 0 is a function that here we can
assume constant. If we expand E = Ef (Q,ω, λ, 0) + “terms with r”, where Ef is the energy of the
finite dimensional part, and think the second term as an error, we obtain

ω̇ = A−1∂λEf (Q,ω, λ, 0) + error, λ̇ = −A−1∂ωEf (Q,ω, λ, 0) + error.

Ignoring errors, this is a 2 dimensional Hamiltonian system with energy Ef ∼ 2−1Aλ2 + d(ω)−ωQ,
where d(ω) = E(ϕω) + ωq(ω) satisfies d′(ω) = q(ω). So, thinking 2−1Aλ2 as the kinetic energy and
VQ(ω) = d(ω) − ωQ as potential energy, we see that ω is approximately the position function in
Newton’s equation with the potential well VQ, with λ the momentum. If Q > q(ω∗), the well has a
local minimum at a point ω = ω+ > ω∗. Thus, in this case, even starting from ω(0) = ω∗, ω will
oscillate around ω+, consistently with the numerical observations by Marzuola et al. [13, Fig. 4–6].
Similarly, we see that if Q < q(ω∗), then V (Q,ω) is monotically increasing and ω will fall to the
unstable side (ω < ω∗) without oscillation.

While we prove oscillations for very long times, the question on what happens asymptotically to
these oscillating patterns remains open. In [13, Conjecture 1.1] it is suggested that asymptotically
these oscillating solutions should scatter to a stable ground state. Reference is made to possible
radiation damping phenomena and to the damped oscillations observed numerically in some cases
for the mass critical saturated NLS by LeMesurier et al. [11, figures 7 and 16]. For further comments
and references see also the discussion in [18, Sect. 9.3.2–9.3.3].

We think that it is plausible that a radiation damping phenomenon like in [17, 3, 6, 8] will
prove Conjecture 1.1 in [13]. However, it is almost certain that the type of coordinates used in the
present work, which originate from the analysis in Comech and Pelinovsky [4], are inadequate to
prove the conjecture. There should exist more ”nonlinear” coordinates, possibly related to the ones
used in the study of the blow up by Perelman [15] and Merle and Raphael [14].

References

[1] D. Bambusi, Asymptotic stability of ground states in some Hamiltonian PDEs with symmetry,
Comm. Math. Phys. 320 (2013), no. 2, 499–542.

[2] V. S. Buslaev and V. E. Grikurov, Simulation of instability of bright solitons for NLS with
saturating nonlinearity, Math. Comput. Simulation 56 (2001), no. 6, 539–546.

[3] V. S. Buslaev and G. S. Perelman, On the stability of solitary waves for nonlinear Schrödinger
equations, Nonlinear evolution equations, Amer. Math. Soc. Transl. Ser. 2, vol. 164, Amer.
Math. Soc., Providence, RI, 1995, pp. 75–98.

[4] A. Comech and D. Pelinovsky, Purely nonlinear instability of standing waves with minimal
energy, Comm. Pure Appl. Math. 56 (2003), no. 11, 1565–1607.

[5] S. Cuccagna, On the Darboux and Birkhoff steps in the asymptotic stability of solitons, Rend.
Istit. Mat. Univ. Trieste 44 (2012), 197–257.

[6] S. Cuccagna, The Hamiltonian structure of the nonlinear Schrödinger equation and the
asymptotic stability of its ground states, Comm. Math. Phys. 305 (2011), no. 2, 279–331.

3



[7] S. Cuccagna, On asymptotic stability of moving ground states of the nonlinear Schrödinger
equation, Trans. Amer. Math. Soc. 366 (2014), no. 6, 2827–2888.

[8] S. Cuccagna and M. Maeda, On small energy stabilization in the NLS with a trapping potential,
Anal. PDE 8 (2015), no. 6, 1289–1349.

[9] Scipio Cuccagna and Masaya Maeda, Long time oscillation of solutions of nonlinear schrödinger
equations near minimal mass ground state, preprint (arXiv:1809.06584).

[10] M. Grillakis, J. Shatah, and W. Strauss, Stability theory of solitary waves in the presence of
symmetry. I, J. Funct. Anal. 74 (1987), no. 1, 160–197.

[11] B. J. LeMesurier, G. Papanicolaou, C. Sulem, and P.-L. Sulem, Focusing and multi-focusing
solutions of the nonlinear Schrödinger equation, Phys. D 31 (1988), no. 1, 78–102.

[12] M. Maeda, Stability and instability of standing waves for 1-dimensional nonlinear Schrödinger
equation with multiple-power nonlinearity, Kodai Math. J. 31 (2008), no. 2, 263–271.

[13] J. L. Marzuola, S. Raynor, and G. Simpson, A system of ODEs for a perturbation of a minimal
mass soliton, J. Nonlinear Sci. 20 (2010), no. 4, 425–461.

[14] F.Merle and P.Raphael , On a sharp lower bound on the blow-up rate for the L2 critical nonlinear
Schrödinger equation , J. Amer. Math. Soc. 19 (2006), no. 1, 37–90.

[15] G. Perelman On the Formation of Singularities in Solutions of the Critical Nonlinear Schrödinger
equation, Ann. Henri Poincaré 2 (2001), 605–673.
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