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Differential Harnack inequality (DHI) is an important tool in the study of geometric
analysis and PDEs. The aim of this talk is to present some new results in the study of DHI
on complete Riemannian manifolds with the so-called CD(K,m)-condition and on geometric
flows, in particular, on Ricci flow and backward Ricci flow.

Let M be an n-dimensional complete Riemannian manifold with Ricci curvature bounded
from below by a non-positive constant −K, i.e., Ric ≥ −K, where K ≥ 0 is a constant. In
their famous paper [5], P. Li and S.-T. Yau proved that for any positive solution to the heat
equation

∂tu = ∆u, (1)

the following DHI holds

|∇u|2

u2
− α∂tu

u
≤ nα2

2t
+

nα2K√
2(α− 1)

. (2)

In particular, when Ric ≥ 0, taking α→ 1, it holds

|∇u|2

u2
− ∂tu

u
≤ n

2t
. (3)

This inequality is sharp as it becomes equality when M = Rn and u(x, t) = 1
(4πt)n/2

e−
‖x‖2
4t .

As a consequence of the Li-Yau differential Harnack inequality (2), Li and Yau obtained
the following parabolic Harnack inequality (PHI) for any positive solution to the heat equa-
tion (1): for any x, y ∈M and 0 < s < t,

u(x, s)

u(y, t)
≤
(
t

s

)nα/2
exp

(
α2d2(x, y)

4(t− s)
+

nαK

2(α− 1)
(t− s)

)
. (4)

In particular, when Ric ≥ 0, it holds

u(x, s)

u(y, t)
≤
(
t

s

)n/2
exp

(
d2(x, y)

4(t− s)

)
.

Moreover, when Ric ≥ 0, it has been shown by Li and Yau that the fundmental solution
to the heat equation (1) satisfies the two-sides Gaussian estimates: for any ε > 0, there
exists constants C1,ε,n > 0 and C2,ε,n > 0 which depend only on ε and n such that for any
x, y ∈M and t > 0

C1,ε,n

V (B(x,
√
t))
e−

d2(x,y)
4(1−ε)t ≤ pt(x, y) ≤ C2,ε,n

V (B(x,
√
t))
e−

d2(x,y)
4(1+ε)t . (5)
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In [3], R. Hamilton proved a dimension free differential Harnack inequality. More pre-
cisely, let M be a compact Riemannian manifold with Ric ≥ −K, where K ≥ 0 is a constant,
then for any positive and bounded solution of (1), it holds

|∇u|2

u2
≤
(

2K +
1

t

)
log(A/u), (6)

where A := sup{u(t, x) : x ∈ M, t ≥ 0}. Indeed, such inequality also holds when M
is a complete Riemannian manifold with Ric ≥ −K. Moreover, on compact Riemannian
manifolds with Ric ≥ −K, Hamilton also proved the following Li-Yau type differential
Harnack inequality for any positive solution to the heat equation (1)

|∇u|2

u2
− e2Kt ∂tu

u
≤ n

2t
e4Kt. (7)

In particular, when K = 0, (7) reduces to (3). We call (2) the Li-Yau differential Harnack
inequality, and (7) the Li-Yau-Hamilton differential Harnack inequality. As a consequence
of (7), Hamilton proved that for any x, y ∈ M and 0 < s < t, the following parabolic
Harnack inequality holds

u(x, s)

u(y, t)
≤
(
t

s

)n/2
exp

(
e2Ks[1 + 2K(t− s)]

4

d2(x, y)

t− s
+
n

2
[e2Kt − e2Ks]

)
. (8)

In [2], R. Hamilton introduced the Ricci flow

∂g

∂t
= −2Ric. (9)

He raised the program to use the Ricci flow to prove the Poincaré conjecture. In [3, 4],
Hamilton used the differential Harnack inequalities associated to the solutions to the back-
ward heat equation to prove some monotonicity formulas for parabolic flows. In [17], G.
Perelman gave a gradient formulation to the Ricci flow, and proved the monotonicity of the
F-entropy and theW-entropy along the conjugate heat equation associated to the Ricci flow.
This leads the no local collapsing theorem and final resolution of the Poincaré conjecture
and Thurston’s geometrization conjecture.

Let (M, g) be an n-dimensional complete Riemannian manifold, φ ∈ C2(M) be a po-
tential function, and dµ = e−φdv, where v is the volume element on (M, g). The weighted
Laplacian on (M, g, φ), called also the Witten Laplacian, is defined by

L = ∆−∇φ · ∇.

For any u, v ∈ C∞0 (M), the integration by parts formula holds∫
M

〈∇u,∇v〉dµ = −
∫
M

Luvdµ = −
∫
M

uLvdµ.

By [1], for any u ∈ C∞(M), the generalized Bochner formula holds

L|∇u|2 − 2〈∇u,∇Lu〉 = 2|∇2u|2 + 2Ric(L)(∇u,∇u), (10)

where ∇2u is the Hessian of u, |∇2u| denotes its Hilbert-Schmidt norm, and

Ric(L) = Ric+∇2φ.

In the literature, Ric(L) is called the Bakry-Emery Ricci curvature associated with the
Witten Laplacian L on (M, g, φ).
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For any m ∈ [n,∞], the m-dimensional Bakry-Emery Ricci curvature associated with
the Witten Laplacian L on (M, g, φ) is defined as follows

Ricm,n(L) := Ric+∇2φ− ∇φ⊗∇φ
m− n

.

We now make a convention: when m = n, φ is a constant, and when m =∞, Ric∞,n(L) =
Ric(L).

Following Bakry and Emery, for any constant m ∈ [n,∞] and K ∈ R, we call that
(M, g, φ) or L satisfies the CD(K,m) (curvature-dimension) condition, if and only if

Ricm,n(L) ≥ K.

In the case m ∈ N∩ [n,∞)Ricm,n(L) has the following geometric interpretation. Define the
warped product metric on Mn × Sm−n by

g̃ = gM
⊕

e−
2φ
m−n gSm−n .

where Sm−n is the (m − n)-dimensional unit sphere in Rm−n+1 with standard Rieman-
nian meetric gSm−n . By [15, 6], Ricm,n(L) equals to the horizontal projection of the Ricci
curvature on (Mn × Sm−n, g̃).

Similarly to the case of Ricci flow, for any m ∈ [n,∞] and K ∈ R, we introduce the
notion of the (K,m)-Ricci flow as follows

∂g

∂t
= −2Ricm,n(L) +Kg. (11)

The (K,m)-super Ricci flow is defined by

∂g

∂t
≥ −2Ricm,n(L) +Kg. (12)

In the case m = n and K = 0, (11) reduces to (9). In the case m = ∞, the (K,∞)-Ricci
flow reads as

∂g

∂t
= −2(Ric+∇2φ) +Kg, (13)

and the (K,∞)-super Ricci flow reads as

∂g

∂t
≥ −2(Ric+∇2φ) +Kg. (14)

In this talk, we present some results on the differential Harnack inequality for positive
solution to the heat equation associated with the Witten Laplacian

∂tu = Lu, (15)

on complete Riemannian manifolds with CD(K,m)-condition and with super Ricci flows,
in particular, Ricci flow and backward Ricci flow.

Theorem 0.1 ([6, 7]) Let (M, g) be a complete Riemannian manifold with C2-potential φ.
Suppose that for some constants m ∈ [n,∞) and K ∈ R we have Ricm,n(L) ≥ −K. Then
for any positive solution to the heat equation (15), and for any α > 1, we have

|∇u|2

u2
− α∂tu

u
≤ mα2

2t
+

mα2K√
2(α− 1)

. (16)
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Moreover, the parabolic Harnack inequality holds: for any x, y ∈M and s < t,

u(x, s)

u(y, t)
≤
(
t

s

)mα/2
exp

(
α2d2(x, y)

4(t− s)
+

mαK

2(α− 1)
(t− s)

)
. (17)

In particular, if Ricm,n(L) ≥ 0, we have the Li-Yau DHI

|∇u|2

u2
− ∂tu

u
≤ m

2t
. (18)

Equivalently when Ricm,n(L) ≥ 0, it holds

L log u+
m

2t
≥ 0. (19)

Moreover, for any x, y ∈M and s < t, it holds

u(x, s)

u(y, t)
≤
(
t

s

)m/2
exp

(
d2(x, y)

4(t− s)

)
.

In [6, 7], we proved the two-sides Gaussian type estimates for the fundamental solution
(i.e., the heat kernel) of the Witten Laplacian, and the Varadhan small time asymptotic
behavior for the heat kernel of the Witten Laplacian. As an application of (19), we introduce
the Hm-entropy for the heat equation (15) as follows

Hm(u(t)) = −
∫
M

u log udµ− m

2
(log(4πt) + 1)

and derived its monotonicity under the condition Ricm,n(L) ≥ 0, i.e.,

d

dt
Hm(u(t)) = −

∫
M

(
L log u+

m

2t

)
udµ ≤ 0.

Similarly to Perelman [17], using the Boltzmann entropy formula in statistical mechanics
we introduced the Wm-entropy for the heat equation (15) and proved the monotonicity and
rigidity theorem for Wm on complete Riemannian manifolds satisfying Ricm,n(L) ≥ 0. For
details, see [7, 8].

Theorem 0.2 ([8]) Let (M, g) be a complete Riemannian manifold with C2-potential φ.
Suppose that for some constant K ∈ R we have Ric(L) ≥ −K. Then, for any positive and
bounded solution to the heat equation (1), we have

|∇u|2

u2
≤ 2K

1− e−2Kt
log

(
A

u

)
, (20)

where A = sup{u(t, x) : x ∈M, t ≥ 0}.

We would like to point out that, DHI (20) is an improved version of Hamilron’s DHI (6).
Indeed, using the inequality

2K

1− e−2Kt
≤ 2K +

1

t
,

we can derive the Hamilton DHI (6) from DHI (20).
In a joint work with Songzi Li [11], we proved the Li-Yau-Hamilton DHI for positive

solution to the heat equation associated with the Witten Laplacian on complete Riemannian
manifolds with the CD(−K,m)-condition. More precisely, we have the following
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Theorem 0.3 ([11]) Let (M, g) be a complete Riemannian manifold with C2-potential φ.
Suppose that for some constants m ∈ [n,∞) and K ∈ R we have Ricm,n(L) ≥ −K. Then
for any positive solution to the heat equation (15), we have the Li-Yau-Hamilton DHI

|∇u|2

u2
− e2Kt ∂tu

u
≤ m

2t
e4Kt. (21)

Moreover, the following parabolic Harnack inequality holds

u(x, s)

u(y, t)
≤
(
t

s

)m/2
exp

(
e2Ks[1 + 2K(t− s)]

4

d2(x, y)

t− s
+
m

2
[e2Kt − e2Ks]

)
. (22)

As an application of (21), we introduced the Hm,K-entropy as follows

Hm,K(u(t)) = −
∫
M

u log udµ− Φm,K(t),

where Φm,K ∈ C((0,∞),R) is a function satisfying

d

dt
Φm,K(t) =

m

2t
e4Kt.

Then, under the condition Ricm,n(L) ≥ −K, we have

d

dt
Hm,K(u(t)) =

∫
M

(
|∇u|2

u2
− e2Kt ∂tu

u
− m

2t
e4Kt

)
udµ ≤ 0.

Similarly to Perelman [17], using the Boltzmann entropy formula in statistical mechanics,
we introduced the Wm,K-entropy for the heat equation (15) and proved its monotonicity
and rigidity theorem. See [11]. See also [9, 13].

In a joint work with Songzi Li [12], see also [10, 14], we extended the DHI (20) and
Hamilton’s DHI (6) to positive and bounded solutions to the heat equation associated with
the Witten Laplacian on complete Riemannian manifolds equipped with a (−K,∞)-super
Ricci flow. More precisely, we have the following

Theorem 0.4 ([10, 12, 14]) Let (M, g(t), φ(t), t ∈ [0, T ]) be a manifold equipped with a
family of complete Riemannian metrics g(t) and C2-potentials φ(t), t ∈ [0, T ]. Suppose that
(g(t), φ(t), t ∈ [0, T ]) is a (−K,∞)-super Ricci flow

1

2

∂g

∂t
+Ric(L) ≥ −Kg. (23)

Then, for any positive and bounded solution to the heat equation (15) associated with the
time dependent Witten Laplace, the DHI (20) holds

|∇u|2

u2
≤ 2K

1− e−2Kt
log

(
A

u

)
,

where A = sup{u(t, x) : x ∈M, t ≥ 0}. Moreover, the Hamilton DHI (6) holds, i.e.,

|∇u|2

u2
≤
(

2K +
1

t

)
log(A/u).

In a joint work with Songzi Li [12], we also proved the Li-Yau type DHI for positive
solutions to the heat equation associated with the time dependent Witten Laplacian on a
variant of the backward (−K,m)-super Ricci flows. In particular, we proved the Li-Yau type
DHI for positive solutions to the heat equation associated with the time dependent Witten
Laplacian on Ricci flow and backward Ricci flow. See also [10]. To save the length of this
abstract, we omit the statements of these results here.
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