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1 Introduction.

Let Ω be a bounded domain in R
3 with C∞-boundary ∂Ω. It is well known that every vecotor

field u in Lr(Ω), 1 < r <∞, can be uniquely represended as

u = v + ∇p,(1.1)

where v ∈ Lr(Ω) with div v = 0 in the sense of distributions in Ω with v · ν = 0 on ∂Ω, and
p ∈ W 1,r(Ω). Here and in what follows, ν denotes the unit outer normal to ∂Ω. For smooth
vector fields in Ω,Weyl [27] proved such a decomposition as an orthogonal sum L2(Ω). The
case for more general Lr-vector fileds was treated by Fujiwara-Morimoto [10], Solonnikov [23]
and Simader-Sohr [21]. It should be noted that (1.1) holds for all u ∈ Lr(Ω), so we can define
the projection operator Pr by Pru = v which palys an important role for investigation into the
Navier-Stokes equations. In this article, we shall prove more precise decomposition for v in (1.1):

v = h+ rot w,(1.2)

where w ∈W 1,r(Ω) with w × ν = 0 on ∂Ω, and where h ∈ C∞(Ω̄) satisfies rot h = 0, div h = 0
in Ω with h · ν = 0 on ∂Ω. This may be regarded as the generalization of the de Rham-
Hodge-Kodaira orthogonal decoposition in L2 for C∞ p-forms Λp(M) on compact Riemaniann
n-manifolds (M,g) without boundary

Λp(M) = Hp(M) ⊕ +d(Λp−1(M)) ⊕ δ(Λp+1(M)), p = 1, · · · , n− 1,(1.3)

where d and δ denote the exterior differentation and its formal adjoint operator, respectively,
and Hp(M) = {h ∈ Λp(M); dh = 0, δh = 0}. Our decoposition (1.2) holds for all u ∈ Lr(Ω)
with 1 < r < ∞ and for all smooth bounded domains Ω in R

3. In the case Ω has a certain
topological type, similar decomposotion to (1.2) in L2(Ω) was investigated by Foias-Temam [8]
and Yoshida-Giga [28]. However, their characterization of orthogal complement of harmonic
vector fields is different from ours.
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To prove (1.2), the vector potential w is formally obtained from the boudary value problem{ −rot rot w = rot u in Ω,
w × ν = 0 on ∂Ω.

It should be noted that this is not an elliptic system for w. Hence, to recover ellipticity, we need
to impose on w the following additinal condition:⎧⎨

⎩
−rot rot w = rot u in Ω,
div w = 0 in Ω,
w × ν = 0 on ∂Ω.

(1.4)

Unfortunately, this modified system is not an ellipic boundary value problem in the sense of
Agmon-Douglis-Nirenberg [1]. Indeed, if w ∈W 2,r(Ω) for some 1 < r <∞, then we may rewrite
(1.4) as ⎧⎨

⎩
−Δw = rot u in Ω,
div w = 0 on ∂Ω,
w × ν = 0 on ∂Ω,

(1.5)

which can be treated as an ellipic boudary value problem in the sense of Agmon-Douglis-
Nirenberg. Since we need to solve (1.4) for an arbitrary given u ∈ Lr(Ω), we can expect only
that w ∈W 1,r(Ω), so the value div w on the boudary ∂Ω in (1.5) cannot be always well-defined.
This means that we are not able to apply to (1.4) the fully established theory on existence and
reglarity of solutions to the elliptic boundary value problems. To get around such difficulty, we
shall formulate (1.4) in a weak sense such as to find w ∈W 1,r(Ω) satisfying∫

Ω
rot w · rot Φdx =

∫
Ω
u · rot Φdx(1.6)

for all Φ ∈W 1,r′(Ω) with div Φ = 0 in Ω, Φ×ν = 0 on ∂Ω, where r′ = r/(r−1). This procedure
is similar to that of finding a scalar potential p in (1.1). Indeed, p ∈ W 1,r(Ω) is obtained from
the weak solution of the Neumann boundary problem for Δ in Ω.∫

Ω
∇p · ∇φdx =

∫
Ω
u · ∇φdx for all φ ∈W 1,r′(Ω).(1.7)

Simader-Sohr [21] solved (1.7) by introducing a variational inequality in W 1,r(Ω) which is a
variant of coercive estimate of Dirichelt form accociated to the operator −Δ. Our proof for
solvability of (1.4) is also based on the following variational inequality. In fact, we shall show
that for every 1 < r <∞, there is a constant C such that
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‖w‖W 1,r(Ω)

≤ C sup

{∣∣∫
Ω rot w · rot Φdx

∣∣
‖Φ‖W 1,r′(Ω)

; Φ ∈W 1,r′(Ω),div Φ = 0 in Ω, Φ × ν = 0 on ∂Ω

}
(1.8)

+
L∑

i=1

∣∣∣∣
∫

Ω
w · ψidx

∣∣∣∣
holds for all w ∈W 1,r(Ω) with div w = 0 in Ω, w×ν = 0 on ∂Ω, where {ψ1, · · · , ψL} is a basis of
the finite dimensional space Vhar(Ω) = {ψ ∈ C∞(Ω̄); rot ψ = 0,div ψ = 0 in Ω, ψ × ν|∂Ω = 0}.
If ∂Ω consists of L+ 1 connected components Γ0,Γ1, · · · ,ΓL of disjonit surfaces with Γ1, · · · ,ΓL

inside of Γ0, i.e., ∂Ω = ∪L
0=1Γi, then we have dim.Vhar(Ω) = L. Similar investigation into the

variational inequality was done by Greisinger [13] in the case when Ω is a star-shaped domain.
Compared with our situtation, she treated the special case when Vhar(Ω) = {0}. Furthermore,
since she took w in W 1,r(Ω) with w = 0 on ∂Ω, it seems to be an open question whether the
complement of the space (1.2) coinsides with the vector space ∇p with the scalar potential
p ∈W 1,r(Ω) as in (1.1).

As an application of (1.2), we shall show the generalized Biot-Savard law for the vector field
u in W 1,r(Ω) with u · ν = 0 on ∂Ω. In the whole space R

3, if v ∈W 1,r(R3) with div v = 0, then
v can be represented as

v(x) =
∫
�3

K(x− y) × rot v(y)dy, K(x) = − 1
4π

x

|x|3

for all x ∈ R
3. Since ∇K(x) is a Calderon-Zygmund kernel, there holds

‖∇v‖Lr(�3) ≤ C‖rot v‖Lr(�3),

‖∇v‖L∞(�3) ≤ C{1 + ‖rot v‖BMO log(e+ ‖v‖H3(�3))}.

See e.g., Beale-Kato-Majda [2] and Kozono-Taniuchi [15]. In bounded domains Ω in R
3, our

decomposition (1.2) gives the corresponding estimates

‖∇u‖Lr(Ω) ≤ C(‖div u‖Lr(Ω) + ‖rot u‖Lr(Ω) + ‖u‖L1(Ω)),(1.9)
‖∇u‖L∞(Ω)(1.10)

≤ C
{
1 + ‖u‖Lr(Ω) + (‖div u‖bmo + ‖rot u‖bmo) log(e+ ‖u‖W s,r(Ω))

}
, s > 1 + 3/r

provied u satisfies u · ν = 0 on ∂Ω. By means of the reprentation formula for u ∈ W 1,r(Ω)
given by Kress [17], von Wahl [26] obtained (1.9) without ‖u‖L1(Ω) on the right hand side when
h always vanishes in (1.2). On the other hand, if u ∈ W 1,r(Ω) with u · ν = 0 on ∂Ω, then
our decomposition (1.2) yields necessarily such a reprsentation formula as we can deduce (1.9)
immediately. Since we need not impose any assumption on Ω, our estimate (1.9) may be regared
as generalization of von Wahl [26]. Furthremore, we shall show the corresponding estimate for
u in higher order Sobolev space W s,r(Ω) via div u and rot u in W s−1,r(Ω) even though u · ν or
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u× ν does not vanish on ∂Ω. Concerning (1.10), by introducing a different elliptic system from
(1.5), Ferrari [7], Shirota-Yanagisawa [22] and Ogawa-Taniuchi [19] gave the proof for u with
div u = 0, u · ν|∂Ω = 0. On the other hand, we shall see that these estimates can be derived
directly from regularity theorem of weak solutions to (1.5). Since we need to impose neither
assumption on Ω nor div u = 0, our estimates (1.9) and (1.10) may be regared as generalization
of [26], [7], [22] and [19].

Based on (1.10), they [7], [22], [19] proved an extension criterion via vorticity rot v on
local strong solutions v for the incompressible Euler equations. In article, we shall show the
correponding criterion for the Navier-Stokes equations. Compared with the Euler equations, we
need to give a bound of boundary integral on ∂Ω for −Δv to the solution v of the Navier-Stokes
equations. To avoid such difficulty, we shall make use of (1.10) together with the estimate of
fractional powers of the Stokes operator in Lr(Ω). Indeed, we shall show that if the strong
solution v of the Navier-Stokes equatons on Ω × (0, T ) satisfies∫ T

0
‖rot v(t)‖bmodt <∞,(1.11)

then v can be extended to the solution on Ω × (0, T ′) for some T ′ > T .

2 Results.

Let us first impose the following assumption on the domain Ω:

Assumption. Ω is a bounded domain in R
3 with the C∞-boundary ∂Ω.

Before stating our results, we introduce some function spaces. Let C∞
0,σ(Ω) denote the set of

all C∞-vector functions ϕ = (ϕ1, ϕ2, ϕ3) with compact support in Ω, such that div ϕ = 0. Lr
σ(Ω)

is the closure of C∞
0,σ(Ω) with respect to the Lr-norm ‖ · ‖r; (·, ·) denotes the duality pairing

between Lr(Ω) and Lr′(Ω), where 1/r + 1/r′ = 1. Lr(Ω) stands for the usual (vector-valued)
Lr-space over Ω, 1 < r < ∞. Let us recall the generalized trace theorem for u · ν and u× ν on
∂Ω defined on the spaces Er

div(Ω) and Er
rot(Ω), respectively.

Er
div(Ω) ≡ {u ∈ Lr(Ω); div u ∈ Lr(Ω)} with the norm ‖u‖Er

div
= ‖u‖r + ‖div u‖r},

Er
rot(Ω) ≡ {u ∈ Lr(Ω); rot u ∈ Lr(Ω)} with the norm ‖u‖Er

rot
= ‖u‖r + ‖rot u‖r}.

It is known that there are bounded operators γν and τν on Er
div(Ω) and Er

rot(Ω) with properties
that

γν : u ∈ Er
div(Ω) 
→ γνu ∈W 1−1/r′,r′(∂Ω)∗, γνu = u · ν|∂Ω if u ∈ C1(Ω̄),

τν : u ∈ Er
rot(Ω) 
→ τνu ∈W 1−1/r′,r′(∂Ω)∗, τνu = u× ν|∂Ω if u ∈ C1(Ω̄),

respectively. We have the following the generalized Stokes formula

(u,∇p) + (div u, p) = 〈γνu, γ0p〉∂Ω for all u ∈ Er
div(Ω) and all p ∈W 1,r′(Ω),(2.1)

(u, rot φ) = (rot u, φ) + 〈τνu, γ0φ〉∂Ω for all u ∈ Er
rot(Ω) and all φ ∈W 1,r′(Ω),(2.2)
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where γ0 denotes the usual trace operator from W 1,r′(Ω) onto W 1−1/r′,r′(∂Ω), and 〈·, ·〉∂Ω is
the duality paring between W 1−1/r′,r′(∂Ω)∗ and W 1−1/r′,r′(∂Ω). Notice that Lr

σ(Ω) = {u ∈
Lr(Ω); div u = 0 in Ω with γνu = 0}.

Let us define two spaces Xr(Ω) and V r(Ω) for 1 < r <∞ by

Xr(Ω) ≡ {u ∈ Lr(Ω); div u ∈ Lr(Ω), rot u ∈ Lr(Ω), γνu = 0},(2.3)
V r(Ω) ≡ {u ∈ Lr(Ω); div u ∈ Lr(Ω), rot u ∈ Lr(Ω), τνu = 0}.(2.4)

Equipped with the norms ‖u‖Xr and ‖u‖V r

‖u‖Xr , ‖u‖V r ≡ ‖div u‖r + ‖rot u‖r + ‖u‖r,(2.5)

we may regard Xr(Ω) and V r(Ω) as Banach spaces. Indeed, in Thereom 2 below, we shall see
that both Xr(Ω) and V r(Ω) are closed subspaces in W 1,r(Ω) since it holds

‖∇u‖r ≤ C‖u‖Xr for all u ∈ Xr(Ω) and ‖∇u‖r ≤ C‖u‖V r for all u ∈ V r(Ω),(2.6)

respectively, where C = C(r) is a constant depending only on r. Furthermore, we define Xr
σ(Ω)

and V r
σ (Ω) by

Xr
σ(Ω) ≡ {u ∈ Xr(Ω); div u = 0 in Ω}, V r

σ (Ω) ≡ {u ∈ V r(Ω); div u = 0 in Ω}.(2.7)

Finally, we denote by Xr
har(Ω) and V r

har(Ω) the Lr-spaces of harmonic vector fileds on Ω

Xr
har(Ω) ≡ {u ∈ Xr

σ(Ω); rot u = 0}, V r
har(Ω) ≡ {u ∈ V r

σ (Ω); rot u = 0}.(2.8)

Our main result now reads

Theorem 1 Let Ω be as in the Assumption. Suppose that 1 < r <∞.
(1) It holds

Xr
har(Ω) = {h ∈ C∞(Ω̄); div h = 0, rot h = 0 in Ω with h · ν = 0 on ∂Ω}(≡ Xhar(Ω)),
V r

har(Ω) = {h ∈ C∞(Ω̄); div h = 0, rot h = 0 in Ω with h× ν = 0 on ∂Ω}(≡ Vhar(Ω)).

Both Xhar(Ω) and Vhar(Ω) are of finite dimensional vector space.
(2) For every u ∈ Lr(Ω), there are p ∈ W 1,r(Ω), w ∈ V r

σ (Ω) and h ∈ Xhar(Ω) such that u
can be represented as

u = h+ rot w + ∇p.(2.9)

Such a triplet {p,w, h} is subordinate to the estimate

‖∇p‖r + ‖w‖V r + ‖h‖r ≤ C‖u‖r(2.10)

with the constant C = C(r) independent of u. The above decompostion (2.9) is unique. In fact,
if u has another expression

u = h̃+ rot w̃ + ∇p̃
for h̃ ∈ Xhar(Ω), w̃ ∈ V r

σ (Ω) and p̃ ∈W 1,r(Ω), then we have

h = h̃, rot w = rot w̃, ∇p = ∇p̃.(2.11)

An immediate consequence of the above theorem is
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Corollary 1 Let Ω be as in the Assumption. By the unique decomposition (2.9) we have

Lr(Ω) = Xhar(Ω) ⊕ rot V r
σ (Ω) ⊕∇ W 1,r(Ω), 1 < r <∞. (direct sum)(2.12)

Let Sr, Rr and Qr be projection operators associated to (2.9) from Lr(Ω) onto Xhar(Ω), rot V r
σ (Ω)

and ∇ W 1,r(Ω), respectively, i.e.,

Sru ≡ h, Rru ≡ rot w, Qru ≡ ∇p.(2.13)

Then we have
‖Sru‖r ≤ C‖u‖r, ‖Rru‖r ≤ C‖u‖r, ‖Qru‖r ≤ C‖u‖r(2.14)

for all u ∈ Lr(Ω), where C = C(r) is the constant depending only on 1 < r < ∞. Moreover,
there holds ⎧⎨

⎩
S2

r = Sr, S∗
r = Sr′ ,

R2
r = Rr, R∗

r = Rr′

Q2
r = Qr, Q∗

r = Qr′ ,
(2.15)

where S∗
r , R

∗
r and Q∗

r denote the adjoint operators on Lr′(Ω) of Sr, Rr and Qr, respectively.

Remark 1. (1) It is known that

Lr(Ω) = Lr
σ(Ω) ⊕∇ W 1,r(Ω), 1 < r <∞, (direct sum).(2.16)

See Fujiwara-Morimoto [10], Solonnikov [23] and Simader-Sohr [21]. Our decomposition (2.12)
gives a more precise direct sum of Lr

σ(Ω) such as

Lr
σ(Ω) = Xhar(Ω) ⊕ rot V r

σ (Ω), 1 < r <∞. (direct sum)(2.17)

(2) Suppose that the boundary ∂Ω has L + 1 connected components Γ0,Γ1, · · · ,ΓL of C2-
surfaces such that Γ1, · · · ,ΓL lie inside of Γ0 with Γi ∩ Γj = φ for i �= j, and scuh that

∂Ω =
L⋃

j=0

Γj .(2.18)

Moreover, we assume that there are N C2-surfaces Σ1, · · · ,ΣN such that Σi ∩ Σj = φ for i �= j,
and such that

Ω̇ ≡ Ω \ Σ,Σ ≡
N⋃

j=1

Σj is simply connected.(2.19)

Then Foias-Temam [8] showed that

dim.Xhar(Ω) = N.(2.20)

They [8] also gave an orthogonal decompostion of L2
σ(Ω) such as

L2
σ(Ω) = Xhar(Ω) ⊕H1(Ω) (orthogonal sum in L2(Ω)),
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where
H1(Ω) ≡ {u ∈ L2

σ(Ω);
∫

Σj

u · νdS = 0, j = 1, · · · , N}.

Yoshida-Giga [28] investigated the operator rot with its domain D(rot) = {u ∈ H1(Ω); rot u ∈
H1(Ω)} and showed that H1(Ω) = rot V 2

σ (Ω). Furthermore, they [28] gave another type of
orthognal L2-decomposition of vector fileds u ∈ D(rot). From our decomposition (2.17) with
r = 2, it follows also that H1(Ω) = rot V 2

σ (Ω).
(3) In the case when Ω is a star-shaped domain, Griesinger [13] gave a simlar decomposition

in Lr(Ω) for 1 < r < ∞. In her case, it holds N = 0. Since she took the smaller space W 1,r
0 (Ω)

than our space V r(Ω), it seems to be an open question whether, in the same way as in (2.12),
the anihilator rot W 1,r

0 (Ω)⊥ of rot W 1,r
0 (Ω) in Lr′(Ω) coinsides with ∇ W 1,r′(Ω).

As an application of our decomposition, we have the following gradeint and higher order
estimates of vector fields via div and rot .

Theorem 2 Let Ω be as in the Assumption. Suppose that 1 < r <∞.
(1) (in case γν) Let dim.Xhar(Ω) = N and let {φ1, · · ·φN} be a basis of Xhar(Ω).

(i) It holds Xr(Ω) ⊂W 1,r(Ω) with the estimate

‖∇u‖r + ‖u‖r ≤ C(‖div u‖r + ‖rot u‖r +
N∑

j=1

|(u, φj)|) for all u ∈ Xr(Ω),(2.21)

where C = C(Ω, r).
(ii) Let s ≥ 1. Suppose that u ∈ Lr(Ω) with div u ∈ W s−1,r(Ω), rot u ∈ W s−1,r(Ω) and

γνu ∈W s−1/r,r(∂Ω). Then we have u ∈W s,r(Ω) with the estimate

‖u‖W s,r(Ω)(2.22)

≤ C(‖div u‖W s−1,r(Ω) + ‖rot u‖W s−1,r(Ω) + ‖γνu‖W s−1/r,r(∂Ω) +
N∑

j=1

|(u, φj)|),

where C = C(Ω, r).
(2) (in case τνu) Let dim.Vhar(Ω) = L and let {ψ1, · · ·ψL} be a basis of Vhar(Ω).

(i) It holds V r(Ω) ⊂W 1,r(Ω) with the estimate

‖∇u‖r + ‖u‖r ≤ C(‖div u‖r + ‖rot u‖r +
L∑

j=1

|(u,ψj)|) for all u ∈ V r(Ω),(2.23)

where C = C(Ω, r).
(ii) Let s ≥ 1. Suppose that u ∈ Lr(Ω) with div u ∈ W s−1,r(Ω), rot u ∈ W s−1,r(Ω) and

τνu ∈W s−1/r,r(∂Ω). Then we have u ∈W s,r(Ω) with the estimate

‖u‖W s,r(Ω)(2.24)

≤ C(‖div u‖W s−1,r(Ω) + ‖rot u‖W s−1,r(Ω) + ‖τνu‖W s−1/r,r(∂Ω) +
L∑

j=1

|(u,ψj)|),
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where C = C(Ω, r).
(3) (L∞-gradient bould) Let u ∈ W s,r(Ω) for s > 1 + 3/r with u · ν|∂Ω = 0 or u × ν|∂Ω = 0.
Then we have ∇u ∈ L∞ with the estimate

‖∇u‖∞ ≤ C
{
1 + ‖u‖r + (‖div u‖bmo + ‖rot u‖bmo) log(e+ ‖u‖W s,r(Ω))

}
,(2.25)

where C = C(r) is the constant independent of u. For definition of the bmo-norm, see Remark
2 below.

Remark 2. (1) Let us recall the bmo-norm in Ω. For f ∈ L1
loc(R

3), we define ‖f‖bmo(�3) by

‖f‖bmo(�3) = sup
x∈�3,0<R<1

1
|BR(x)|

∫
BR(x)

|f(y) − fBR(x)|dy + sup
x∈�3

1
|B1(x)|

∫
B1(x)

|f(y)|dy

with fBR(x) =
1

|BR(x)|
∫

BR(x)
f(y)dy, where BR(x) denotes the ball in R

3 centered at x with

radius R and |BR(x)| is its volume. For g ∈ L1
loc(Ω) we say g ∈ bmo(Ω) if there is an extension

f ∈ bmo(R3) such that g = f on Ω. The bmo-norm ‖g‖bmo of g on Ω is defined by

‖g‖bmo ≡ inf{|f‖bmo(�3); f ∈ bmo(R3), f = g on Ω}.
(2) von Wahl [26] treated the homogeneous gradeint bound such as

‖∇u‖r ≤ C(‖div u‖r + ‖rot u‖r)

for u ∈W 1,r(Ω) with γνu = 0 and τνu = 0. He proved that such a homogeneous estimate holds
if and only if N = 0, i.e., Ω is simply connected in the case γνu = 0, and if and only if L = 0,
i.e., Ω has only one connected component of the boundary ∂Ω in the case τνu = 0, respectively.
Our variational inequality (1.8) makes it possible to prove (2.21) and (2.23) for an arbitraly
bounded domain Ω. So, von Wahl’s estimate [26] may be regarded as a special case of ours since
our Assumption on Ω includes such cases as (2.18) and (2.19) . His method is based on the
representation formula for u ∈W 1,r(Ω) via div u and rot u which is different from ours. Similar
estimate to (2.22) with

∑N
j=1 |(u, φj)| replaced by ‖u‖r was obtained by Temam[25, Proposition

1.4, Appendix I] for s ≥ 1, r = 2 and by Bourguignon-Brezis [4, Lemma 5] for s ≥ 2, 1 < r <∞,
respectively. See also Duvaut-Lions [6, Theorem 6.1, Chapther 7].

(3) In R
3, by means of the Biot-Savard law, Beale-Kato-Majda [2] and Kozono-Taniuchi [15]

obtained a similar estimate to (2.25) for u ∈ W s,r(R3) with s > 1 + 3/r. More generalized
version in the homogeneou Besov space Ḃ0∞,∞ is found in Kozono-Ogawa-Taniuch [16]. In the
case of simply connected bounded domains Ω in R

3, Ferrari showed (2.25) for div u = 0 with
u · ν|∂Ω = 0. More general case such as (2.18) and (2.19) was treated by Shirota-Yanagisawa
[22] and Ogawa-Taniuchi [19].

As an application of Theorem 2, we show an extension criterion of strong solutions of the
nonstationary Navier-Stokes equations.

(N-S)

⎧⎪⎪⎨
⎪⎪⎩

∂tu− Δu+ u · ∇u+ ∇p = 0 in x ∈ Ω, t > 0,
div u = 0 in x ∈ Ω, t > 0,
u = 0 on x ∈ ∂Ω, t > 0,
u |t=0 = a
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It is shown by Fujita-Kato [9], Giga-Miyakawa [11] and Kato[14] that for every a ∈ Lr
σ with

3 ≤ r <∞, there are T > 0 and a unique solution u of (N-S) on (0, T ) such that

u ∈ C([0, T );Lr
σ(Ω)) ∩ C1((0, T );Lr

σ(Ω)) ∩ C((0, T );W 2,r(Ω)).(2.26)

It is an interesting question whether the solutions u(t) blows up at t = T or can be continued
beyound T . Our second result now reads

Theorem 3 Let Ω be as in the Assumption. Suppose that u is the solution of (N-S) on (0, T )
in the class (2.26). If ∫ T

0
‖rot u(t)‖bmodt <∞,(2.27)

then there is T ′ > T such that u can be contiuned to the solution of (N-S) on (0, T ′) in the same
class as (2.27).

An immediate consequense of the above theorem is

Corollary 2 Let Ω be as in the Assumption. Suppose that u is the solution of (N-S) on (0, T )
in the class (2.26). If T is the maximal, then we have

lim
t→T−0

∫ t

0
‖rot u(s)‖bmods = ∞.(2.28)

In particular, it holds lim sup
t→T−0

‖rot u(t)‖bmo = ∞.

Remark 3. (1) For the Euler equations in the whole space R
3, Beale-Kato-Majda [2] first

proved the above extension criteron in the case
∫ T

0
‖rot u(t)‖L∞dt < ∞. Later on, Kozono-

Tanuich [15] and Kozono-Taniuchi-Ogawa [16] proved it under the weaker norm such as BMO
and the homogeneous Besov space Ḃ0∞,∞. It should be noted that there hlods the continuous
inclusion L∞ ⊂ BMO ⊂ Ḃ0∞,∞.

(2) For the Euler equations in bouded domains Ω in R
3, Ferrari [7] treated the case when

Ω is simply connected and obtained the same criterion as Beale-Kato-Majda [2] in R
3. Shirota-

Yanagisawa [22] succeeded to deal with the genaral case of multi-connected domains Ω such as
(2.18) and (2.19). Then Ogawa-Taniuch [19] improved their results in terms of weaker norm
bmo on Ω.
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[3] Bergh, J., Löfström, J., Interpolation spaces, An introduction. Berlin-New York-Heidelberg:
Springer-Verlag 1976.

[4] Bourguignon, J.P., Brezis, H., Remarks on the Euler equations. J. Func. Anal. 15, 341–363 (1974).

[5] Caffarelli, L., Kohn, R., Nirenberg, L., Partial regularity of suitable weak solutions of the Navier-
Stokes equations. Comm. Pure Appl. Math. 35 , 771-831 (1982).

[6] Duvaut,G., Lions, J.L., Inequalities in Mechanics and Physics. Berlin-New York-Heidelberg:
Springer-Verlag 1976.

[7] Ferrari, A.B., On the blow-up of solutions of 3-D Euler equations in a bounded domain. Commun.
Math. Phys. 155, 277–294 (1993).

[8] Foias, C., Temam, R., Remarques sur les equations de Navier-Stokes stationaires et les phenomenes
successifs de bifurcations. Ann. Scola Norm. Super. Pisa 5, 29–63 (1978).

[9] Fujita, H., Kato, T., On the Navier-Stokes Initial Value Problem I. Arch. Rational Mech. Anal. 16,
269-315 (1964).

[10] Fujiwara, D., Morimoto, H., An Lr theorem of the Helmholtz decomposition of vector fields. J. Fac
Sci. Univ. Tokyo, Sec.IA 24, 685–700 (1977).

[11] Giga, Y., Miyakawa, T., Solution in Lr of the Navier-Stokes initial value problem. Arch. Rational
Mech. Anal.89, 267–281 (1985).

[12] Giga, Y., Solutions for semilinear parabolic equations in Lp and regularity of weak solutions of the
Navier-Stokes system. J. Differential Equations 62, 186-212 (1986).

[13] Griesinger, R., Decompositions of Lq and H1,q
0 with respect to the operator rot. Math. Ann.288,

245–262 (1990).

[14] Kato, T., Strong Lp-solutions of the Navier-Stokes equation in R
m, with applications to weak

solutions. Math. Z. 187, 471-480 (1984).

[15] Kozono, H., Taniuchi, Y., Limiting case of the Sobolev inequality in BMO, with application to the
Euler equations. Comm. Math. Phy. 214, 191–200 (2000).

[16] Kozono, H., Ogawa, T., Taniuchi, Y., The critical Sobolev inequalities in Besov spaces and regularity
criterion to some semi-linear evolution equations. Math. Z. 242, 251–278 (2002).
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