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We consider the uniqueness of solution in L∞(R; H1) for the Cauchy problem of
the Sobolev critical nonlinear Schrödinger equation on Rn, n ≥ 3.

i∂tu + ∆u = |u|4/(n−2)u, (t, x) ∈ R1+n,(1)

u(0, x) = u0(x), x ∈ Rn.(2)

The existence of solution L∞(R; H1) for (1)-(2) can easily be showed by combin-
ing the standard compactness argument and the energy inequality (see, e.g., [1]).
Recently, the existence in C(R;H1) has been proved by Colliander, Keel, Staffi-
lani, Takaoka and Tao [2] for n = 3. Furthermore, the uniqueness of solution in
C(R; H1) is already known for n ≥ 3 (see, e.g., [1], [3] and [5]). However, it still
remains open whether the solution in L∞(R; H1) is unique or not. In [6], Struwe
gives a partial answer to this problem. Namely, he proves that the solution u in
L∞(R; H1) ∩ L1

loc(R; H2) is unique among solutions in L∞(R; H1) satisfying the
strong energy inequality:

(3) E(u(t)) ≤ E(u(s)) (t > s ≥ 0 or t < s ≤ 0),

where
E(u) = ∥∇u∥2

L2 +
n − 2

n
∥u∥2n/(n−2)

L2n/(n−2) .

We note that the solution u in L∞(R;H1) always satisfies the L2 norm conservation
law:

∥u(t)∥L2 = ∥u0∥L2 , t ∈ R.

An interesting question is what additional conditions ensure the uniqueness of
solution in L∞(R; H1). This is one of the most fundamental problems which appear
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in various nonlinear partial differential equations. For example, this kind of problem
has a long history for the incompressible Navier-Stokes equations (see, e.g., [4] and
references therein).

We have the following theorem.

Theorem 1. Let n ≥ 3 and u0 ∈ H1. Suppose that for some T1, T2 > 0,
(1)-(2) has a solution v in C((−T1, T2);H1). Let u be a solution of (1)-(2) in
L∞((−T1, T2);H1) with the same initial data as v above, which satisfies the energy
inequality.

(4) E(u(t)) ≤ E(u0), t ∈ (−T1, T2).

Then, u(t) = v(t) on (−T1, T2).

Remark 1. (i) Inequality (4) is often called the weak energy inequality, because (4)
is weaker than (3). The standard compactness argument always yields this weak
energy inequality (4), while the proof of (3) requires some more arguments.

(ii) The solution u in L∞((−T1, T2);H1) of (1)-(2) is necessarily a weakly con-
tinuous H1-valued function.

Since the existence of solution in C(R;H1) to (1)-(2) is proved for n = 3 in [2],
the following corollary follows from the combination of Theorem 1 above and the
uniqueness theorem of strongly continuous solution in H1 by [1] and [5].

Corollary 2. Assume that n = 3 and u0 ∈ H1. Then, a solution in L∞(R; H1) of
(1)-(2) satisfying (4) is unique.

Remark 2. For the proof of Theorem 1, we show the strong continuity in time of
solution in L∞((−T1, T2);H1) satisfying (4), which implies the desired uniqueness
result. Theorem 1 itself seems interesting, though there may be nothing novel in
its proof.
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