3 つの $\boldsymbol{\delta}$ 関数を初期データに持つ非線形シュレー ディンガー方程式の解の時間大域的評価について

Naoyasu Kita
Miyazaki University

1 Introduction and Main Results

We consider the initial value problem of the nonlinear Schrödinger equation like

$$
\left\{\begin{array}{l}
i \partial_{t} u=-\Delta u+\lambda \mathcal{N}(u) \tag{1.1}\\
u(0, x)=\mu_{00} \delta_{0}+\mu_{10} \delta_{a}+\mu_{01} \delta_{b}
\end{array}\right.
$$

where $(t, x) \in \mathbf{R} \times \mathbf{R}^{n}(n \geq 1), \partial_{t}=\partial / \partial t$ and $\Delta=\partial^{2} / \partial x_{1}^{2}+\partial^{2} / \partial x_{2}^{2}+\cdots+\partial^{2} / \partial x_{n}^{2}$ ．The unknown variable $u=u(t, x)$ takes a complex number．The nonlinearity $\mathcal{N}(u)$ is of the gauge invariant power type given by

$$
\mathcal{N}(u)=|u|^{p-1} u \quad \text { with } 1<p<1+2 / n .
$$

The nonlinear coefficient λ belongs to \mathbf{C}（the set of complex numbers）．In particular， if $\operatorname{Im} \lambda<0$ ，the nonlinear term causes dissipative effect．In the initial data，δ_{a} denotes the well－known point mass measure supported at $x=a \in \mathbf{R}^{n}$ and $\mu_{j k}(j, k=0,1)$ are complex numbers．

About（1．1），the speaker showed that
－If $u(0, x)=\mu \delta_{0}$ ，then $u(t, x)=A(t) U(t) \delta_{0}$ ，where $U(t)=\exp (i t \Delta)$ and $A(t)$ depends only on time variable t ．Note that $A(t)$ blows up at $t=T^{*}>0$ if $\operatorname{Im} \lambda>0$ and globally exists if $\operatorname{Im} \lambda \leq 0$ ．
－If $u(0, x)=\mu_{0} \delta_{0}+\mu_{1} \delta_{a}$ ，then $u(t, x)=\sum_{j \in \mathbf{Z}} A_{j}(t) U(t) \delta_{j a}$ ．Note that，roughly speaking， $A_{j}(t)$ blow up at $t=T^{*}>0$ if $\operatorname{Im} \lambda>0$ and globally exist if $\operatorname{Im} \lambda \leq 0$.

Hence our present concern is to consider the triple δ－function case．If $a=q b$ for some $q \in \mathbf{Q}$（ \mathbf{Q} denotes the quotient number field），then the δ－functions are located at three points on the 1－dimensional lattice and（1．1）is solvable globaly in time－the proof follows similarly to the double δ－function case．Therefore，in what follows，we restrict ourselvs to observing the case $a \neq q b$ for any $q \in \mathbf{Q}$ ．Before stating the time local result， let us introduce several notations．The weighted sequence space $\ell_{\alpha}^{2}\left(\mathbf{Z}^{2}\right)$ is defined by

$$
\ell_{\alpha}^{2}\left(\mathbf{Z}^{2}\right)=\left\{\left\{A_{j k}\right\}_{j, k \in \mathbf{Z}} ;\left\|\left\{A_{j k}\right\}_{j, k \in \mathbf{Z}}\right\|_{\ell_{\alpha}^{2}\left(\mathbf{Z}^{2}\right)}<\infty\right\},
$$

where $\left\|\left\{A_{j k}\right\}_{j, k \in \mathbf{Z}}\right\|_{\ell_{\alpha}^{2}\left(\mathbf{Z}^{2}\right)}^{2}=\sum_{j, k \in \mathbf{Z}}(1+|j|+|k|)^{2 \alpha}\left|A_{j k}\right|^{2}$. For simplicity of the description, we often use $\left\{A_{j k}\right\}$ in place of $\left\{A_{j k}\right\}_{j, k \in \mathbf{Z}}$. Then the time local result is

Theorem 1.1 (local result) Let $\lambda \in \mathbf{C}$ and $1<\alpha<p$. Then, for some $T>0$, there exists a unique solution to (1.1) described as

$$
\begin{equation*}
u(t, x)=\sum_{j, k \in \mathbf{Z}} A_{j k}(t) U(t) \delta_{j a+k b}, \tag{1.2}
\end{equation*}
$$

where $\left\{A_{j k}(t)\right\} \in C\left([0, T] ; \ell_{\alpha}^{2}\left(\mathbf{Z}^{2}\right)\right) \cap C^{1}\left((0, T] ; \ell_{\alpha}^{2}\left(\mathbf{Z}^{2}\right)\right)$ with $A_{j k}(0)=\mu_{j k}$ if $(j, k)=$ $(0,0),(1,0),(0,1)$ and $A_{j k}(0)=0$ otherwise.

Remark 1.1. The solution in Theorem 1.1 also causes the generation of new modes. Note that, for $t \neq 0, U(-t) u(t)$ looks like a point mass measure supported at 2-dimensional lattice points if $a \nVdash b$, and densely distributed on the line along vector a if $a \| b$ and $a \neq q b$ for any $q \in \mathbf{Q}$. Reading the proof of Theorem 1.1, we see that it is possible to construct a solution even when the initial data consists of infintely many δ-functions such as $u(0, x)=\sum_{j, k \in \mathbf{Z}} \mu_{j k} \delta_{j a+k b}$ with $\left\{\mu_{j k}\right\} \in \ell_{\alpha}^{2}\left(\mathbf{Z}^{2}\right)$ and $\alpha>1$.

The sign of $\operatorname{Im} \lambda$ determines the blowing-up or global existence of the solution.

Theorem 1.2 (blowing-up result) Let $\operatorname{Im} \lambda>0$. Then, the solution in Theorem 1.1 blows up in positive finite time. Precisely speaking, $\lim _{t \uparrow T^{*}}\left\|\left\{A_{j k}(t)\right\}\right\|_{\ell_{0}^{2}\left(\mathbf{Z}^{2}\right)}=\infty$ for some $T^{*}>0$.

As for the global existence, the difficulty largely depends on whether a and b are parallel or not, which does not arise in the single and double δ-function case.

Theorem 1.3 (global result) (1) Let $a \nVdash b$. Then, if $\operatorname{Im} \lambda \leq 0$, there exists a unique global solution to (1.1) described as in Theorem 1.1, where $\left\{A_{j k}(t)\right\} \in C\left([0, \infty) ; \ell_{\alpha}^{2}\left(\mathbf{Z}^{2}\right)\right) \cap$ $C^{1}\left((0, \infty) ; \ell_{\alpha}^{2}\left(\mathbf{Z}^{2}\right)\right)$.
(2) Let $a \| b$ and $a \neq q b$ for any $q \in \mathbf{Q}$. Then, if $\operatorname{Im} \lambda \leq 0$ and additionally \mid Re $\lambda \mid \leq$ $\frac{2 \sqrt{p}}{p-1}|\operatorname{Im} \lambda|$, there exists a unique global solution to (1.1) described as in Theorem 1.1, where $\left\{A_{j k}(t)\right\} \in C\left([0, \infty) ; \ell_{\alpha}^{2}\left(\mathbf{Z}^{2}\right)\right) \cap C^{1}\left((0, \infty) ; \ell_{\alpha}^{2}\left(\mathbf{Z}^{2}\right)\right)$.

Remark 1.2. When $a \nVdash b$, the important matter is the equivalence of $\left\|\left\{(j a+k b) A_{j k}\right\}\right\|_{\ell_{0}^{2}\left(\mathbf{Z}^{2}\right)}$ and $\left\|\left\{j A_{j k}\right\}\right\|_{\ell_{0}^{2}\left(\mathbf{Z}^{2}\right)}+\left\|\left\{k A_{j k}\right\}\right\|_{\ell_{0}^{2}\left(\mathbf{Z}^{2}\right)}$. However, this is not the case if $a \| b$. As for Theorem 1.3 (2), it is still open whether the additional condition $|\operatorname{Re} \lambda| \leq \frac{2 \sqrt{p}}{p-1}|\operatorname{Im} \lambda|$ is removed or not. In our proof, this condition will be applied to obtain the time global estimate of
$\left\|\left\{A_{j k}(t)\right\}\right\|_{\ell_{1}^{2}\left(\mathbf{Z}^{2}\right)}$ (This gives a rise to the desired estimate in $\left.\ell_{\alpha}^{2}\left(\mathbf{Z}^{2}\right)\right)$. The key to derive this esimate is Liskevich-Perelmuter's inequality [5], i.e., if $\operatorname{Im} \lambda \leq 0$ and $|\operatorname{Re} \lambda| \leq \frac{2 \sqrt{p}}{p-1}|\operatorname{Im} \lambda|$, then it follows that $\operatorname{Im}\left(\lambda\left(\mathcal{N}\left(v_{1}\right)-\mathcal{N}\left(v_{2}\right)\right) \overline{\left(v_{1}-v_{2}\right)}\right) \leq 0$.

We close this abstract by giving some more notations used in this talk. Let $\mathbf{T}=\mathbf{R} / 2 \pi \mathbf{Z}$ where \mathbf{Z} stands for the integer set. The quantity $\|f\|_{L^{q}\left(\mathbf{T}^{2}\right)}$ denotes $\left(\int_{\mathbf{T}^{2}}\left|f\left(\theta_{1}, \theta_{2}\right)\right|^{q} d \theta_{1} d \theta_{2}\right)^{1 / q}$. We next define the Besov space for periodic functions. Let $[s]$ be the greatest integer not exceeding s. Then, if s is not integer and $1<q, r<\infty$, the Besov space $B_{q, r}^{s}\left(\mathbf{T}^{2}\right)$ is defined by

$$
B_{q, r}^{s}\left(\mathbf{T}^{2}\right)=\left\{f \in L^{q}\left(\mathbf{T}^{2}\right) ;\|f\|_{B_{q, r}^{s}\left(\mathbf{T}^{2}\right)}<\infty\right\},
$$

where

$$
\begin{aligned}
\|f\|_{B_{q, r}^{s}\left(\mathbf{T}^{2}\right)} & \equiv\|f\|_{L^{q}\left(\mathbf{T}^{2}\right)}+\|f\|_{\dot{B}_{q, r}^{s}} \\
& \equiv\|f\|_{L^{q}\left(\mathbf{T}^{2}\right)}+\left(\int_{0}^{\infty} \tau^{-r s-1} \sup _{|h|<\tau}\left\|d_{h}^{[s]+1} f\right\|_{L^{q}\left(\mathbf{T}^{2}\right)}^{r} d \tau\right)^{1 / r}
\end{aligned}
$$

with $h=\left(h_{1}, h_{2}\right)$ and $d_{h}^{N} f\left(\theta_{1}, \theta_{2}\right)=\sum_{j=0}^{N}\binom{N}{j}(-1)^{k} f\left(\theta_{1}+j h_{1}, \theta_{2}+j h_{2}\right)$. We remark that, if $0 \leq \sigma \leq 1$ and $1 / q=\sigma / q_{1}+(1-\sigma) / q_{0}$ with $1 \leq q_{1}, q_{0} \leq \infty$, then the GagliardoNirenberg type inequality $\|f\|_{\dot{B}_{q, r / \sigma}^{\sigma s}\left(\mathbf{T}^{2}\right)} \leq C\|f\|_{\dot{B}_{q_{1}, r}^{s}\left(\mathbf{T}^{2}\right)}^{\sigma}\|f\|_{L^{q o}\left(\mathbf{T}^{2}\right)}^{1-\sigma}$ follows from the above definition. We also note that $\|f\|_{B_{2,2}^{s}\left(\mathbf{T}^{2}\right)}$ is equivalent to

$$
\|f\|_{H^{s}\left(\mathbf{T}^{2}\right)} \equiv\left(\sum_{j, k \in \mathbf{Z}}(1+|j|+|k|)^{2 s}\left|C_{j k}\right|^{2}\right)^{1 / 2}
$$

where $C_{j k}$ is the Fourier coefficient of f given by $(2 \pi)^{-2} \int_{\mathbf{T}^{2}} f\left(\theta_{1}, \theta_{2}\right) e^{-i\left(j \theta_{1}+k \theta_{2}\right)} d \theta_{1} d \theta_{2}$. Also, the inner product of $f\left(\theta_{1}, \theta_{2}\right)$ and $g\left(\theta_{1}, \theta_{2}\right) \in L^{2}\left(\mathbf{T}^{2}\right)$ is defined by $\langle f, g\rangle_{\theta_{1}, \theta_{2}}=$ $\int_{\mathbf{T}^{2}} f\left(\theta_{1}, \theta_{2}\right) \overline{g\left(\theta_{1}, \theta_{2}\right)} d \theta_{1} d \theta_{2}$.

References

[1] H. Brezis and A. Friedman, "Nonlinear parabolic equations involving measures as initial data", J. Math. Pures Appl. 62(1983), 73-97.
[2] H. Brezis and T. Gallouet, "Nonlinear Schrödinger evolution equations", Nonlinear Anal. TMA 4(1980), 677-681.
[3] J. Ginibre, T. Ozawa and G. Velo, " On the existence of the wave operators for a class of nonlinear Schrödinger equations", Ann. Inst. H. Poincaré Phys. Théor. 60(1994), 211-239.
[4] C. Kenig, G. Ponce and L. Vega, " On the ill-posedness of some canonical dispersive equations", Duke Math. J. 106(2001), 627-633.
[5] V.A. Liskevich and M.A. Perelmuter, "Analyticity of sub-Markovian semigroups", Proc. Amer. Math. Soc. 123 (1995), 1097-1104.
[6] Y. Tsutsumi, " The Cauchy problem for the Korteweg-de Vries equation with measure as initial data", SIAM J. Math. Anal. 20(1989), 582-588.

