
３つの δ 関数を初期データに持つ非線形シュレー
ディンガー方程式の解の時間大域的評価について

NAOYASU KITA

Miyazaki University

1 Introduction and Main Results

We consider the initial value problem of the nonlinear Schrödinger equation like{
i∂tu = −∆u + λN (u)
u(0, x) = µ00δ0 + µ10δa + µ01δb

(1.1)

where (t, x) ∈ R×Rn (n ≥ 1), ∂t = ∂/∂t and ∆ = ∂2/∂x2
1 + ∂2/∂x2

2 + · · ·+ ∂2/∂x2
n. The

unknown variable u = u(t, x) takes a complex number. The nonlinearity N (u) is of the
gauge invariant power type given by

N (u) = |u|p−1u with 1 < p < 1 + 2/n.

The nonlinear coefficient λ belongs to C (the set of complex numbers). In particular,
if Imλ < 0, the nonlinear term causes dissipative effect. In the initial data, δa denotes
the well-known point mass measure supported at x = a ∈ Rn and µjk (j, k = 0, 1) are
complex numbers.

About (1.1), the speaker showed that

• If u(0, x) = µδ0, then u(t, x) = A(t)U(t)δ0, where U(t) = exp(it∆) and A(t) depends
only on time variable t. Note that A(t) blows up at t = T ∗ > 0 if Imλ > 0 and
globally exists if Imλ ≤ 0.

• If u(0, x) = µ0δ0+µ1δa, then u(t, x) =
∑
j∈Z

Aj(t)U(t)δja. Note that, roughly speaking,

Aj(t) blow up at t = T ∗ > 0 if Imλ > 0 and globally exist if Imλ ≤ 0.

Hence our present concern is to consider the triple δ-function case. If a = qb for
some q ∈ Q (Q denotes the quotient number field), then the δ-functions are located at
three points on the 1-dimensional lattice and (1.1) is solvable globaly in time — the proof
follows similarly to the double δ-function case. Therefore, in what follows, we restrict
ourselvs to observing the case a ̸= qb for any q ∈ Q. Before stating the time local result,
let us introduce several notations. The weighted sequence space ℓ2

α(Z2) is defined by

ℓ2
α(Z2) = {{Ajk}j,k∈Z; ∥{Ajk}j,k∈Z∥ℓ2α(Z2) < ∞},
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where ∥{Ajk}j,k∈Z∥2
ℓ2α(Z2) =

∑
j,k∈Z(1 + |j|+ |k|)2α|Ajk|2. For simplicity of the description,

we often use {Ajk} in place of {Ajk}j,k∈Z. Then the time local result is

Theorem 1.1 (local result) Let λ ∈ C and 1 < α < p. Then, for some T > 0, there
exists a unique solution to (1.1) described as

u(t, x) =
∑

j,k∈Z

Ajk(t)U(t)δja+kb,(1.2)

where {Ajk(t)} ∈ C([0, T ]; ℓ2
α(Z2)) ∩ C1((0, T ]; ℓ2

α(Z2)) with Ajk(0) = µjk if (j, k) =
(0, 0), (1, 0), (0, 1) and Ajk(0) = 0 otherwise.

Remark 1.1. The solution in Theorem 1.1 also causes the generation of new modes. Note
that, for t ̸= 0, U(−t)u(t) looks like a point mass measure supported at 2-dimensional
lattice points if a ̸∥ b, and densely distributed on the line along vector a if a ∥ b and
a ̸= qb for any q ∈ Q. Reading the proof of Theorem 1.1, we see that it is possible to
construct a solution even when the initial data consists of infintely many δ-functions such
as u(0, x) =

∑
j,k∈Z µjkδja+kb with {µjk} ∈ ℓ2

α(Z2) and α > 1.

The sign of Imλ determines the blowing-up or global existence of the solution.

Theorem 1.2 (blowing-up result) Let Imλ > 0. Then, the solution in Theorem 1.1
blows up in positive finite time. Precisely speaking, lim

t↑T ∗
∥{Ajk(t)}∥ℓ20(Z2) = ∞ for some

T ∗ > 0.

As for the global existence, the difficulty largely depends on whether a and b are
parallel or not, which does not arise in the single and double δ-function case.

Theorem 1.3 (global result) (1) Let a ̸∥ b. Then, if Imλ ≤ 0, there exists a unique
global solution to (1.1) described as in Theorem 1.1, where {Ajk(t)} ∈ C([0,∞); ℓ2

α(Z2))∩
C1((0,∞); ℓ2

α(Z2)).

(2) Let a ∥ b and a ̸= qb for any q ∈ Q. Then, if Imλ ≤ 0 and additionally |Re λ| ≤
2
√

p

p − 1
|Im λ|, there exists a unique global solution to (1.1) described as in Theorem 1.1,

where {Ajk(t)} ∈ C([0,∞); ℓ2
α(Z2)) ∩ C1((0,∞); ℓ2

α(Z2)).

Remark 1.2. When a ̸∥ b, the important matter is the equivalence of ∥{(ja+kb)Ajk}∥ℓ20(Z2)

and ∥{jAjk}∥ℓ20(Z2)+∥{kAjk}∥ℓ20(Z2). However, this is not the case if a ∥ b. As for Theorem

1.3 (2), it is still open whether the additional condition |Reλ| ≤
2
√

p

p − 1
|Imλ| is removed

or not. In our proof, this condition will be applied to obtain the time global estimate of



∥{Ajk(t)}∥ℓ21(Z2) (This gives a rise to the desired estimate in ℓ2
α(Z2)). The key to derive this

esimate is Liskevich-Perelmuter’s inequality [5], i.e., if Imλ ≤ 0 and |Reλ| ≤
2
√

p

p − 1
|Imλ|,

then it follows that Im
(
λ(N (v1) −N (v2))(v1 − v2)

)
≤ 0.

We close this abstract by giving some more notations used in this talk. Let T = R/2πZ

where Z stands for the integer set. The quantity ∥f∥Lq(T2) denotes
(∫

T2
|f(θ1, θ2)|q dθ1dθ2

)1/q

.

We next define the Besov space for periodic functions. Let [s] be the greatest integer not
exceeding s. Then, if s is not integer and 1 < q, r < ∞, the Besov space Bs

q,r(T
2) is

defined by

Bs
q,r(T

2) = {f ∈ Lq(T2); ∥f∥Bs
q,r(T2) < ∞},

where

∥f∥Bs
q,r(T2) ≡ ∥f∥Lq(T2) + ∥f∥Ḃs

q,r

≡ ∥f∥Lq(T2) +

(∫ ∞

0
τ−rs−1 sup

|h|<τ
∥d[s]+1

h f∥r
Lq(T2) dτ

)1/r

with h = (h1, h2) and dN
h f(θ1, θ2) =

N∑
j=0

(
N
j

)
(−1)kf(θ1 + jh1, θ2 + jh2). We remark

that, if 0 ≤ σ ≤ 1 and 1/q = σ/q1 + (1 − σ)/q0 with 1 ≤ q1, q0 ≤ ∞, then the Gagliardo-
Nirenberg type inequality ∥f∥Ḃσs

q,r/σ
(T2) ≤ C∥f∥σ

Ḃs
q1,r(T2)

∥f∥1−σ
Lq0 (T2) follows from the above

definition. We also note that ∥f∥Bs
2,2(T2) is equivalent to

∥f∥Hs(T2) ≡

 ∑
j,k∈Z

(1 + |j| + |k|)2s|Cjk|2
1/2

,

where Cjk is the Fourier coefficient of f given by (2π)−2
∫
T2

f(θ1, θ2)e
−i(jθ1+kθ2) dθ1dθ2.

Also, the inner product of f(θ1, θ2) and g(θ1, θ2) ∈ L2(T2) is defined by ⟨f, g⟩θ1,θ2 =∫
T2

f(θ1, θ2)g(θ1, θ2) dθ1dθ2.
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