The distribution of eigenfunctions in the Anderson model

Fumihiko Nakano *

Octorber 14, 2006, at Kumamoto University

Abstract

We study the distribution of eigenvalues and corresponding eigenvalues in the localized region of the Anderson model. We show (1) all eigenfunctions in the localized region I are uniformly distributed, (2) distributions of the eigenfunctions whose eigenvalues are in the order of L^{-d} obeys a Poissonian law for large L, (3) eigenfunctions whose eigenvalues are in the order of L^{-2d} are repulsive each other.

1 Introduction

The Anderson model on $l^2(\mathbf{Z}^d)$ is given by

$$(H\phi)(x) = \sum_{|x-y|=1} \phi(y) + \lambda V_{\omega}(x)\phi(x), \quad \phi \in l^2(\mathbf{Z}^d)$$

where $\lambda \neq 0$ is the coupling constant and $\{V_{\omega}(x)\}_{x \in \mathbb{Z}^d}$ are the independent, identically distributed real-valued random variables on a probability space $(\Omega, \mathcal{F}, \mathbf{P})$ such that the common distribution has a bounded density ρ . The following results are well-known.

(1) the spectrum of H is almost surely equal to a fixed set $\Sigma (\subset \mathbf{R})$ [8]:

$$\sigma(H) = \Sigma \quad a.s., \quad \Sigma := [-2d, 2d] + \lambda \text{ supp } \rho.$$

^{*}Faculty of Science, Department of Mathematics and Information Science, Kochi University, 2-5-1, Akebonomachi, Kochi, 780-8520, Japan. e-mail : nakano@math.kochi-u.ac.jp

(2) (Anderson localization, [1, 2, 4, 6, 12]) There exists an interval $I(\subset \Sigma)$ such that, with probability $1, \sigma(H) \cap I$ is dense pure point with exponentially decaying eigenfunctions. I can typically be taken (i) $I = \Sigma$ if $\lambda \gg 1$, (ii) in the extreme energy, (iii) in the band edges, (iv) away from the spectrum of the free Laplacian if $\lambda \ll 1$.

The aim of this talk is to study the distribution of eigenvalues and eigenvalues where the Anderson localization takes place. We first fix notations.

(1) $\Lambda_L(x)$ is the finite box with center $x \in \mathbf{Z}^d$ and size L > 0 and $\partial \Lambda$ is the "boundary" of the box Λ :

$$\Lambda_L(x) := \{ y \in \mathbf{Z}^d : |y_j - x_j| \le \frac{L}{2}, j = 1, 2, \cdots, d \}$$
$$\partial \Lambda := \{ x \in \Lambda : |y - x| = 1, \text{ for some } y \notin \Lambda \}$$

(2) For a box Λ , let $H_{\Lambda} := H|_{\Lambda}$ is the restriction of H on Λ . (3) Let $\gamma > 0, E \in \mathbf{R}$ and let $G_{\Lambda}(E; x, y) := \langle x|(H_{\Lambda} - E)^{-1}|y\rangle$. We say the box $\Lambda_L(x)$ is (γ, E) -regular iff $E \notin \sigma(H_{\Lambda_L(x)})$ and

$$\sum_{y \in \partial \Lambda_L(x)} |G_{\Lambda_L(x)}(E; x, y)| \le e^{-\gamma \frac{L}{2}}.$$

(4) For $\phi \in l^2(\mathbf{Z}^d)$, let $X(\phi)$ be the set of its center of localization :

$$X(\phi) := \{ x \in \mathbf{Z}^d : |\phi(x)| = \max_{y \in \mathbf{Z}^d} |\phi(y)| \}$$

This definition is due to [5]. We choose $x(\phi) \in X(\phi)$ according to an order on \mathbb{Z}^d . For an eigenvalue E of H, we choose the corresponding eigenfunction ϕ_E (according to some procedure) and set $X(E) = X(\phi), x(E) \in X(E)$. (5) Let ν be the density of states measure on \mathbb{R} :

$$\nu(A) := \mathbf{E}[\langle 0|P_A(H)|0\rangle], \quad A \in \mathcal{B}(\mathbf{R})$$

where $P_A(H)$ is the spectral projection of H corresponding to A.

2 Results

Throughout this talk, we assume :

Assumption We can find an interval $I(\subset \Sigma)$, p > 6d such that

 $\mathbf{P}\left(\text{ For any } E \in I, H_{\Lambda_{L_0}(0)} \text{ is } (\gamma, E) \text{-regular}\right) \geq 1 - L_0^{-p}$

for sufficiently large L_0 .

This assumption is known to hold in some regions in Σ where Anderson localization holds, whose location is mentioned in Introduction. Take any α with $1 < \alpha < \frac{2p}{p+2d}$ and set

$$L_{k+1} := L_k^{\alpha}, \quad \Lambda_k(x) := \Lambda_{L_k}(x), \quad k = 0, 1, \cdots$$

Then by the multiscale analysis, we have the following estimate by which we deduce the exponential decay of eigenfunctions [12] :

P (For any
$$E \in I$$
, either $\Lambda_k(x)$ or $\Lambda_k(y)$ is (γ, E) -regular $) \ge 1 - L_k^{-2p}$

for any $x, y \in \mathbb{Z}^d$ with $|x - y| > L_k$. Let $\Lambda_k = \{1, 2, \dots, L_k\}^d$, $k = 1, 2, \dots$ be a box of size L_k and let $H_k := H|_{\Lambda_k}$ with periodic boundary condition.

(1) Macroscopic Limit

Let $\{E_j(\Lambda_k)\}$ be the eigenvalues of H_k and let $\{F_j(\Lambda_k)\} = \{E_j(\Lambda_k)\} \cap I$. We consider the following random measure on $I \times K$ $(K := [0, 1]^d)$.

$$\xi_k := \frac{1}{|\Lambda_k|} \sum_j \delta_{X_j}, \quad X_j := (F_j(\Lambda_k), L_k^{-1} x(F_j(\Lambda_k))) \in I \times K.$$

Theorem 2.1 $\xi_k \xrightarrow{v} \nu \otimes dx$, a.s. as $k \to \infty$.

Theorem 2.1 roughly says that the center of localizations are uniformly distributed. Theorem 2.1 holds for most random models for which the multiscale analysis is applicable(e.g., [3, 7]).

(2) Local fluctuation

Since eigenvalues of H_{Λ} typically arranges in the order of $|\Lambda|$, we take a reference energy $E_0 \in I$, consider the scaled eigenvalues, and define the following point process on $\mathbf{R} \times K$.

$$\xi'_k := \sum_j \delta_{Y_j}, \quad Y_j := (|\Lambda_k| (E_j(\Lambda_k) - E_0), L_k^{-1} x(E_j(\Lambda_k))) \in \mathbf{R} \times K.$$

Theorem 2.2 Suppose $E_0 \in I$ is a Lebesgue point of ν . Then $\xi'_k \xrightarrow{d} \zeta_P$ as $k \to \infty$ where ζ_P is the Poisson process on $\mathbf{R} \times K$ with intensity measure $\mathbf{E}\zeta_P = \frac{d\nu}{dE}(E_0)dE \times dx$.

For its proof, Minami's estimate [10] is the essential ingredient. For other models where Anderson localization is known to hold [3, 7], we can show that the limiting points of $\{\xi'_k\}$ are infinitely divisible with absolutely continuous intensity measure. Theorems 2.1, 2.2 can be stated in another form [9].

(3) Repulsion of eigenfunctions

We consider eigenvalues which are much closer than $|\Lambda_k|^{-1}$ and see that the corresponding eigenfunctions are repulsive.

Theorem 2.3 [11] Let $d_k := |\Lambda_k|^{-2}k^{-2}$. Then for a.e. ω and for any eigenvalue E of H, we can find $k_0 = k_0(E, \omega)$ such that for $k \ge k_0$, any other eigenvalues E' with $|E - E'| \le d_k$ satisfy $|x(E) - x(E')| \ge L_k$.

Theorem 2.3 roughly says that, if two eigenvalues E, E' of H satisfy $|E-E'| \leq L^{-2d}$, then the corresponding centers of localization must satisfy $|x(E) - x(E')| \geq L$.

References

- Aizenman, M., Localization at Weak Disorder: Some Elementary Bounds, Rev. Math. Phys. 6(1994), 1163-1182.
- [2] Aizenman, M., Molchanov, S., Localization at Large Disorder and at Extreme Energies: An Elementary Derivation, Commun. Math. Phys. 157(1993), 245-278.
- [3] Faris, W., Localization Estimates for Off-Diagonal Disorder, Lectures in Applied Mathematics, Vol. 27(1991), 391-406.
- [4] Fröhlich, J., Spencer, T., Absence of diffusion in the Anderson tight binding model for large disorder or low energy, Commun. Math. Phys. 88(1983), 151-184.
- [5] Germinet, F., De Bièvre, S. : Dynamical localization for discrete and continuous random Schrödinger operators. Comm. Math. Phys. 194 (1998), no. 2, 323–341.

- [6] Goldsheid, I. Ja., Molchanov, S. A., and Pastur, L. : A pure point spectrum of the one-dimensional Schrödinger operator J. Funct. Anal. Appl. 11(1977)1-10.
- [7] Klopp, F., Nakamura, S., Nakano, F., and Nomura, Y.: Anderson localization for 2D discrete Schrödinger operators with random magnetic fields, Annales Henri Poincaré 4(2003), p.795-811.
- [8] Kunz, H., Souillard, B. : Sur le spectre des operateurs aux differences finies aleatoires., Comm. Math. Phys. 78(1980), 201-246.
- [9] Killip, R., Nakano, F. : Eigenfunction statistics in the localized Anderson model to appear in Annales Henri Poincaré. mp-arc 06-150.
- [10] N. Minami, Local fluctuation of the spectrum of a multidimensional Anderson tight binding model, Commun. Math. Phys. 177(1996), 709-725.
- [11] F. Nakano, The repulsion between localization centers in the Anderson model, to appear in J. Stat. Phys. mp-arc 06-149
- [12] von Dreifus, H., Klein, A., A new proof of localization in the Anderson tight binding model, Commun. Math. Phys. 124(1989), 285-299.