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Abstract

We study the distribution of eigenvalues and corresponding eigen-
values in the localized region of the Anderson model. We show (1) all
eigenfunctions in the localized region I are uniformly distributed, (2)
distributions of the eigenfunctions whose eigenvalues are in the order
of L= obeys a Poissonian law for large L, (3) eigenfunctions whose
eigenvalues are in the order of L~2¢ are repulsive each other.

1 Introduction

The Anderson model on (?(Z%) is given by
(Ho)(x)= D o(y) +A\Va(x)o(x), o€ *(Z7)

lz—y|=1

where A # 0 is the coupling constant and {V,,(x)},cz« are the independent,
identically distributed real-valued random variables on a probability space
(Q, F,P) such that the common distribution has a bounded density p. The
following results are well-known.

(1) the spectrum of H is almost surely equal to a fixed set 3(C R) [8]:

o(H)=% a.s., X:=[-2d,2d]+ X supp p.
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(2) (Anderson localization, [1, 2, 4, 6, 12]) There exists an interval I(C X)
such that, with probability 1, o(H )N is dense pure point with exponentially
decaying eigenfuntions. I can typically be taken (i) I = X if A > 1, (ii) in
the extreme energy, (iii) in the band edges, (iv) away from the spectrum of
the free Laplacian if A < 1.

The aim of this talk is to study the distribution of eigenvalues and eigen-
values where the Anderson localization takes place. We first fix notations.

(1) A(z) is the finite box with center z € Z¢ and size L > 0 and OA is the
“boundary” of the box A :
d L.
Ap(z) ={y € Z%: |y; — ;| < 500 = 1,2,---,d}
ON:={xeA:|ly—z|=1, forsomey¢ A}

(2) For a box A, let Hy := H|, is the restriction of H on A.
(3) Let v > 0, F € R and let GA(F;z,y) := (z|(Hy — E)"'|y). We say the
box Ap(z) is (v, E)-regular iff E ¢ o(Hy, () and

L
> |G (Eiay)| < e
yEIAL (z)

(4) For ¢ € I>(Z%), let X(¢) be the set of its center of localization :
X(6) = {z € 70+ |9(x)| = max |6(s)}
yeZ

This definition is due to [5]. We choose z(¢) € X (¢) according to an order
on Z%. For an eigenvalue E of H, we choose the corresponding eigenfunction
¢ (according to some procedure) and set X (F) = X (¢),z(FE) € X(E).

(5) Let v be the density of states measure on R:

v(A) = E[(0|Pa(H)|0)], A€ B(R)

where P4(H) is the spectral projection of H corresponding to A.

2 Results

Throughout this talk, we assume :



Assumption We can find an interval I(C X), p > 6d such that
P ( For any E € I, Hy, (o) 15 (7, E)—regular) >1-— L7

for sufficiently large Lyg.

This assumption is known to hold in some regions in ¥ where Anderson
localization holds, whose location is mentioned in Introduction. Take any «

. 2p
with 1 < a < PR and set

L1 =Ly, Ag(x):=Ar(z), k=0,1,---.

Then by the multiscale analysis, we have the following estimate by which we
deduce the exponential decay of eigenfunctions [12] :

P ( For any E € I, either Ay(z) or Ag(y) is (v, E)-regular ) > 1 — L;
for any z,y € Z¢ with |z —y| > Ly. Let Ay = {1,2,--+, Ly }4, k=1,2,--- be

a box of size Ly and let Hy, := H|,, with periodic boundary condition.

(1) Macroscopic Limit
Let {E;(Ag)} be the eigenvalues of Hy and let {F;(Ax)} = {E;(Ag)}NI. We
consider the following random measure on I x K (K := [0,1]%).

& = ﬁ > 0x,, Xj=(Fi(Aw), Ly o (Fj (M) € 1 x K.

Theorem 2.1 &, 5 v ®dx, a.s. as k — oo.

Theorem 2.1 roughly says that the center of localizations are uniformly dis-
tributed. Theorem 2.1 holds for most random models for which the multiscale
analysis is applicable(e.g., [3, 7]).

(2) Local fluctuation

Since eigenvalues of H, typically arranges in the order of |A|, we take a
reference energy Fy € I, consider the scaled eigenvalues, and define the
following point process on R x K.

&, = ZfSYja Y = (|A(Bj(Ax) — Eo), Ly '2(E;(Ar))) € R X K.



Theorem 2.2 Suppose Ey € I is a Lebesgue point of v. Then & LN (p as
k — oo where Cp is the Poisson process on R x K with intensity measure
E(p = % (Ey)dE x dx.

For its proof, Minami’s estimate [10] is the essential ingredient. For other
models where Anderson localization is known to hold [3, 7], we can show that
the limiting points of {}.} are infinitely divisible with absolutely continuous
intensity measure. Theorems 2.1, 2.2 can be stated in another form [9].

(3) Repulsion of eigenfunctions
We consider eigenvalues which are much closer than [A;|~! and see that the
corresponding eigenfunctions are repulsive.

Theorem 2.3 [11] Let dy, := |A|72k™2. Then for a.e. w and for any eigen-
value E of H, we can find kg = ko(E,w) such that for k > ko, any other
eigenvalues B with |E — E'| < dy, satisfy |x(E) — x(E")| > L.

Theorem 2.3 roughly says that, if two eigenvalues F, E' of H satisfy |[E—FE'| <
L2 then the corresponding centers of localization must satisfy |z(E) —
z(E")| > L.
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