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Abstract

We study the distribution of eigenvalues and corresponding eigen-
values in the localized region of the Anderson model. We show (1) all
eigenfunctions in the localized region I are uniformly distributed, (2)
distributions of the eigenfunctions whose eigenvalues are in the order
of L

−d obeys a Poissonian law for large L, (3) eigenfunctions whose
eigenvalues are in the order of L

−2d are repulsive each other.

1 Introduction

The Anderson model on l2(Zd) is given by

(Hφ)(x) =
∑

|x−y|=1

φ(y) + λVω(x)φ(x), φ ∈ l2(Zd)

where λ 6= 0 is the coupling constant and {Vω(x)}x∈Zd are the independent,
identically distributed real-valued random variables on a probability space

(Ω,F ,P) such that the common distribution has a bounded density ρ. The
following results are well-known.

(1) the spectrum of H is almost surely equal to a fixed set Σ(⊂ R) [8]:

σ(H) = Σ a.s., Σ := [−2d, 2d] + λ supp ρ.
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(2) (Anderson localization, [1, 2, 4, 6, 12]) There exists an interval I(⊂ Σ)
such that, with probability 1, σ(H)∩I is dense pure point with exponentially

decaying eigenfuntions. I can typically be taken (i) I = Σ if λ � 1, (ii) in

the extreme energy, (iii) in the band edges, (iv) away from the spectrum of
the free Laplacian if λ � 1.

The aim of this talk is to study the distribution of eigenvalues and eigen-

values where the Anderson localization takes place. We first fix notations.

(1) ΛL(x) is the finite box with center x ∈ Zd and size L > 0 and ∂Λ is the
“boundary” of the box Λ :

ΛL(x) := {y ∈ Zd : |yj − xj| ≤
L

2
, j = 1, 2, · · · , d}

∂Λ := {x ∈ Λ : |y − x| = 1, for some y /∈ Λ}

(2) For a box Λ, let HΛ := H|Λ is the restriction of H on Λ.
(3) Let γ > 0, E ∈ R and let GΛ(E; x, y) := 〈x|(HΛ − E)−1|y〉. We say the

box ΛL(x) is (γ, E)-regular iff E /∈ σ(HΛL(x)) and

∑

y∈∂ΛL(x)

|GΛL(x)(E; x, y)| ≤ e−γ L
2 .

(4) For φ ∈ l2(Zd), let X(φ) be the set of its center of localization :

X(φ) := {x ∈ Zd : |φ(x)| = max
y∈Zd

|φ(y)|}

This definition is due to [5]. We choose x(φ) ∈ X(φ) according to an order

on Zd. For an eigenvalue E of H, we choose the corresponding eigenfunction
φE (according to some procedure) and set X(E) = X(φ), x(E) ∈ X(E).

(5) Let ν be the density of states measure on R:

ν(A) := E[〈0|PA(H)|0〉], A ∈ B(R)

where PA(H) is the spectral projection of H corresponding to A.

2 Results

Throughout this talk, we assume :
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Assumption We can find an interval I(⊂ Σ), p > 6d such that

P
(

For any E ∈ I, HΛL0
(0) is (γ, E)-regular

)

≥ 1 − L−p
0

for sufficiently large L0.

This assumption is known to hold in some regions in Σ where Anderson
localization holds, whose location is mentioned in Introduction. Take any α

with 1 < α < 2p
p+2d

and set

Lk+1 := Lα
k , Λk(x) := ΛLk

(x), k = 0, 1, · · · .

Then by the multiscale analysis, we have the following estimate by which we
deduce the exponential decay of eigenfunctions [12] :

P ( For any E ∈ I, either Λk(x) or Λk(y) is (γ, E)-regular ) ≥ 1 − L−2p
k

for any x, y ∈ Zd with |x− y| > Lk. Let Λk = {1, 2, · · · , Lk}
d, k = 1, 2, · · · be

a box of size Lk and let Hk := H|Λk
with periodic boundary condition.

(1) Macroscopic Limit

Let {Ej(Λk)} be the eigenvalues of Hk and let {Fj(Λk)} = {Ej(Λk)}∩ I. We
consider the following random measure on I × K (K := [0, 1]d).

ξk :=
1

|Λk|

∑

j

δXj
, Xj := (Fj(Λk), L

−1
k x(Fj(Λk))) ∈ I × K.

Theorem 2.1 ξk
v
→ ν ⊗ dx, a.s. as k → ∞.

Theorem 2.1 roughly says that the center of localizations are uniformly dis-

tributed. Theorem 2.1 holds for most random models for which the multiscale
analysis is applicable(e.g., [3, 7]).

(2) Local fluctuation

Since eigenvalues of HΛ typically arranges in the order of |Λ|, we take a
reference energy E0 ∈ I, consider the scaled eigenvalues, and define the

following point process on R× K.

ξ′k :=
∑

j

δYj
, Yj := (|Λk|(Ej(Λk) − E0), L

−1
k x(Ej(Λk))) ∈ R × K.
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Theorem 2.2 Suppose E0 ∈ I is a Lebesgue point of ν. Then ξ ′k
d
→ ζP as

k → ∞ where ζP is the Poisson process on R × K with intensity measure

EζP = dν
dE

(E0)dE × dx.

For its proof, Minami’s estimate [10] is the essential ingredient. For other
models where Anderson localization is known to hold [3, 7], we can show that

the limiting points of {ξ′k} are infinitely divisible with absolutely continuous
intensity measure. Theorems 2.1, 2.2 can be stated in another form [9].

(3) Repulsion of eigenfunctions

We consider eigenvalues which are much closer than |Λk|
−1 and see that the

corresponding eigenfunctions are repulsive.

Theorem 2.3 [11] Let dk := |Λk|
−2k−2. Then for a.e. ω and for any eigen-

value E of H, we can find k0 = k0(E, ω) such that for k ≥ k0, any other

eigenvalues E ′ with |E − E ′| ≤ dk satisfy |x(E) − x(E ′)| ≥ Lk.

Theorem 2.3 roughly says that, if two eigenvalues E, E ′ of H satisfy |E−E ′| ≤

L−2d, then the corresponding centers of localization must satisfy |x(E) −
x(E ′)| ≥ L.
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