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We consider the following nonlinear Schrodinger equation with a delta
function potential:

10 = —02u + yd(x)u + aluftu, (t,z) € R xR, (1)

where v, & € R, 1 < p < 00, and 6(z) is the delta function at x = 0. The
formal expression —92 + vd(z) in (1) is formulated as a linear operator A,
or H, associated with a quadratic form a., on H'(R):

a,(u,v) = /R@xu(:v)axv(x) dz +~yu(0)v(0), wu,v e H'(R).

Then, there exists a unique bounded linear operator A, : H'(R) — H *(R)
such that
(Au,v) = Rea,(u,v), u,ve H(R).

Moreover, we define a linear operator H, in L*(R) by H,v = —d2%v for
v € D(H,) with the domain

D(H,) ={v e H*(R\ {0}) N H'(R) : 9,v(40) — 0,v(—0) = yv(0)}.
Then, H, is a self-adjoint operator in L*(R), and satisfies
(‘HWUa U)Lz = G’W(U’v 'U), u,v € D(H’Y)

The following spectral properties of H., are known: oes(H,) = 0ac(H,) =
[0,00), 0sc(Hy) = 0. If v >0, 0,(H,) = 0. If v <0, 0,(H,) = {—~*/4}
with its positive normalized eigenfuction (|y|/2)*/2e=N=l/2 (see [1, Chapter
1.3] for details).



In this talk, we study the structure and the orbital stability of standing
wave solutions €™y, () for (1), where w € R is a parameter, and ¢, € H*(R)
is a positive solution of the stationary problem:

Ao+ wo+alel o =0 in H\(R), (2)

The local well-posedness of the Cauchy problem for (1) in the energy space
H'(R) follows from an abstract result in Cazenave [2]. Moreover, there is
conservation of charge and energy, i.e.,

[u®)l|rz = l[uollze,  E(u(t)) = E(ug), Vte€[0,T7),

where u(t) is the solution of (1) with u(0) = ug € H'(R), T* = T*(ug) €
(0, 00] is the maximal existence time of u(t), and E' is defined by
P+l

1 a
E(v) = 5“7(“7“) + mHUHLIH—I

1 ol «
= 510003 + F0O) + Sl

(see Theorem 3.7.1 and Corollary 3.3.11 in [2]).

For the stability of standing waves for (1), the case where v < 0 and
a < 0 was first studied by Goodman, Holmes and Weinstein [7] for the
special case p = 3, and then by Fukuizumi, Ohta and Ozawa [6] for general
case 1 < p < 0.

Theorem 1 ([6]) Let v < 0, a = =1 and 1 < p < co. Ifw > 7?/4, the
stationary problem (2) has a unique positive solution ¢, € H'(R) given by

wawz(@%ﬂﬂuwD{thﬁgﬁ@m+wm)yM%” 3)

for x € R, where b(w) = tanh_l(—#&). If 1 < p <5, the standing wave
solution e“tp,, of (1) is stable for any w € (¥*/4,00). If p > 5, there exists
w* = w*(7,p) € (v*/4,00) such that e“'p, is stable for any w € (v*/4,w*),

and is unstable for any w € (w*, 00).

Remark that for the case where v = 0 and a < 0, the standing wave
solution e™'p,, is stable for any w € (0,00) if 1 < p < 5, and is unstable for
any w € (0,00) if p > 5. Fukuizumi and Jeanjean [5] studies the case where

7 > 0 and a < 0. Note that the expression (3) of ¢, is valid for the case
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where v > 0 and o« = —1 (see also [4] for the expression of ¢,). The stability

of ey, is determined by the sign of the derivative of the function
W= |’90w||%2 = pr2<5ppl>/ (cosh y)*4/(p71) dy,
b(w)

where C), is a positive constant depending only on p. Moreover, the fact that
¢, 1s a minimizer of the minimization problem

inf{S,(v) : v € HY(R)\ {0}, L,(v) =0}
plays an important role in the proof of Theorem 1. Here, we put

i 1 1
§|U(O)|2 - m”vuﬁm

L(v) = [|100]|72 + wlvllZ2 +~10(0)* = o]l

1 w
Sulv) = 10013 + 5 o3 +

Next, we consider the case where 7 < 0 and a > 0 (attractive potential
and repulsive nonlinearity).

Theorem 2 Let v < 0, a = 1 and 1 < p < co. If0 < w < 72/4, the
stationary problem (2) has a unique positive solution p, € H'(R) given by

for x € R, where c(w) = tanh™*(2y/w/|y|). The standing wave solution
e“to, of (1) is orbitally stable.

Theorem 3 Let v < 0, a =1 and w = 0. If1 < p < 5, the stationary
problem (2) has a unique positive solution @y € H'(R) given by

_ 2(p + 1) Ve
#olw) = ({4 +(p— 1)|7||:r!}2)

for x € R. The stationary solution @q of (1) is orbitally stable. If p > 5, the
stationary problem (2) has no nontrivial solutions in H'(R).

The proof of Theorem 2 is based on the fact that ¢, is characterized by
a minimizer of the minimization problem

inf{S,(v) : v e H(R)},

and the conservation of energy and charge (cf. Cazenave and Lions [3]).
Theorem 3 is proved in a similar way.
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