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We consider the following nonlinear Schrödinger equation with a delta

function potential:

i∂tu = −∂2
xu + γδ(x)u + α|u|p−1u, (t, x) ∈ R× R, (1)

where γ, α ∈ R, 1 < p < ∞, and δ(x) is the delta function at x = 0. The

formal expression −∂2
x + γδ(x) in (1) is formulated as a linear operator Aγ

or Hγ associated with a quadratic form aγ on H1(R):

aγ(u, v) =

∫

R
∂xu(x)∂xv(x) dx + γu(0)v(0), u, v ∈ H1(R).

Then, there exists a unique bounded linear operator Aγ : H1(R) → H−1(R)

such that

〈Aγu, v〉 = Re aγ(u, v), u, v ∈ H1(R).

Moreover, we define a linear operator Hγ in L2(R) by Hγv = −∂2
xv for

v ∈ D(Hγ) with the domain

D(Hγ) = {v ∈ H2(R \ {0}) ∩H1(R) : ∂xv(+0)− ∂xv(−0) = γv(0)}.

Then, Hγ is a self-adjoint operator in L2(R), and satisfies

(Hγu, v)L2 = aγ(u, v), u, v ∈ D(Hγ).

The following spectral properties of Hγ are known: σess(Hγ) = σac(Hγ) =

[0,∞), σsc(Hγ) = ∅. If γ ≥ 0, σp(Hγ) = ∅. If γ < 0, σp(Hγ) = {−γ2/4}
with its positive normalized eigenfuction (|γ|/2)1/2e−|γ||x|/2 (see [1, Chapter

I.3] for details).
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In this talk, we study the structure and the orbital stability of standing

wave solutions eiωtϕω(x) for (1), where ω ∈ R is a parameter, and ϕω ∈ H1(R)

is a positive solution of the stationary problem:

Aγϕ + ωϕ + α|ϕ|p−1ϕ = 0 in H−1(R). (2)

The local well-posedness of the Cauchy problem for (1) in the energy space

H1(R) follows from an abstract result in Cazenave [2]. Moreover, there is

conservation of charge and energy, i.e.,

‖u(t)‖L2 = ‖u0‖L2 , E(u(t)) = E(u0), ∀t ∈ [0, T ∗),

where u(t) is the solution of (1) with u(0) = u0 ∈ H1(R), T ∗ = T ∗(u0) ∈
(0,∞] is the maximal existence time of u(t), and E is defined by

E(v) =
1

2
aγ(v, v) +

α

p + 1
‖v‖p+1

Lp+1

=
1

2
‖∂xv‖2

L2 +
γ

2
|v(0)|2 +

α

p + 1
‖v‖p+1

Lp+1 .

(see Theorem 3.7.1 and Corollary 3.3.11 in [2]).

For the stability of standing waves for (1), the case where γ < 0 and

α < 0 was first studied by Goodman, Holmes and Weinstein [7] for the

special case p = 3, and then by Fukuizumi, Ohta and Ozawa [6] for general

case 1 < p < ∞.

Theorem 1 ([6]) Let γ < 0, α = −1 and 1 < p < ∞. If ω > γ2/4, the

stationary problem (2) has a unique positive solution ϕω ∈ H1(R) given by

ϕω(x) =

(
(p + 1)ω

2

)1/(p−1) {
cosh

(
(p− 1)

√
ω

2
|x|+ b(ω)

)}−2/(p−1)

(3)

for x ∈ R, where b(ω) = tanh−1(− γ
2
√

ω
). If 1 < p ≤ 5, the standing wave

solution eiωtϕω of (1) is stable for any ω ∈ (γ2/4,∞). If p > 5, there exists

ω∗ = ω∗(γ, p) ∈ (γ2/4,∞) such that eiωtϕω is stable for any ω ∈ (γ2/4, ω∗),
and is unstable for any ω ∈ (ω∗,∞).

Remark that for the case where γ = 0 and α < 0, the standing wave

solution eiωtϕω is stable for any ω ∈ (0,∞) if 1 < p < 5, and is unstable for

any ω ∈ (0,∞) if p ≥ 5. Fukuizumi and Jeanjean [5] studies the case where

γ > 0 and α < 0. Note that the expression (3) of ϕω is valid for the case
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where γ > 0 and α = −1 (see also [4] for the expression of ϕω). The stability

of eiωtϕω is determined by the sign of the derivative of the function

ω 7→ ‖ϕω‖2
L2 = Cpω

5−p
2(p−1)

∫ ∞

b(ω)

(cosh y)−4/(p−1) dy,

where Cp is a positive constant depending only on p. Moreover, the fact that

ϕω is a minimizer of the minimization problem

inf{Sω(v) : v ∈ H1(R) \ {0}, Iω(v) = 0}
plays an important role in the proof of Theorem 1. Here, we put

Sω(v) =
1

2
‖∂xv‖2

L2 +
ω

2
‖v‖2

L2 +
γ

2
|v(0)|2 − 1

p + 1
‖v‖p+1

Lp+1 ,

Iω(v) = ‖∂xv‖2
L2 + ω‖v‖2

L2 + γ|v(0)|2 − ‖v‖p+1
Lp+1 .

Next, we consider the case where γ < 0 and α > 0 (attractive potential

and repulsive nonlinearity).

Theorem 2 Let γ < 0, α = 1 and 1 < p < ∞. If 0 < ω < γ2/4, the

stationary problem (2) has a unique positive solution ϕω ∈ H1(R) given by

ϕω(x) =

(
(p + 1)ω

2

)1/(p−1) {
sinh

(
(p− 1)

√
ω

2
|x|+ c(ω)

)}−2/(p−1)

for x ∈ R, where c(ω) = tanh−1(2
√

ω/|γ|). The standing wave solution

eiωtϕω of (1) is orbitally stable.

Theorem 3 Let γ < 0, α = 1 and ω = 0. If 1 < p < 5, the stationary

problem (2) has a unique positive solution ϕ0 ∈ H1(R) given by

ϕ0(x) =

(
2(p + 1)γ2

{4 + (p− 1)|γ||x|}2

)1/(p−1)

for x ∈ R. The stationary solution ϕ0 of (1) is orbitally stable. If p ≥ 5, the

stationary problem (2) has no nontrivial solutions in H1(R).

The proof of Theorem 2 is based on the fact that ϕω is characterized by

a minimizer of the minimization problem

inf{Sω(v) : v ∈ H1(R)},
and the conservation of energy and charge (cf. Cazenave and Lions [3]).

Theorem 3 is proved in a similar way.
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