楕円型方程式系の特異極限問題

Yoshihito Oshita

Graduate School of Natural Science and Technology Okayama University

November 11, 2006

We consider

$$\begin{cases} -\Delta v = \mathbf{1}_{\Omega^+} - m, & \text{in } \Omega, \\ \frac{\partial v}{\partial n} = 0, & \text{on } \partial \Omega, \\ \beta v + \kappa = 0, & \text{on } \Gamma, \end{cases}$$
(1)

where $\Omega \subset \mathbb{R}^2$ is a bounded domain with the smooth boundary $\partial\Omega$; $\partial/\partial n$ is the normal derivative on $\partial\Omega$; Ω^+ is an open set in Ω ; $\Gamma = \partial\Omega^+ \subset \Omega$ is a C^2 -curve embedded in Ω ; κ is the curvature of Γ ; $\beta > 0$ is a parameter; $m \in (0, 1)$ is a constant; and $\mathbf{1}_{\Omega^+}$ denotes the characteristic function of Ω^+ .

This problem comes from the following reaction-diffusion systems:

$$u_{\tau} = \epsilon^2 \Delta u + f(u) - \mu v, \qquad v_{\tau} = \Delta v + g(u, v), \tag{2}$$

where $u = u(y,\tau)$ and $v = v(y,\tau)$ are real-valued functions on $(y,\tau) \in \mathbb{R}^2 \times \mathbb{R}^+$; $\epsilon, \mu > 0$ are positive constants; $f \in C^1(\mathbb{R})$ is a function satisfying f(i) = 0, f'(i) < 0 (i = 0, 1), f(a) = 0, f'(a) > 0 with $a \in (0, 1)$, and f(s) = -W'(s) with $W \in C^2(\mathbb{R})$ being a double-equal-well potential satisfying

$$W(0) = W(1) = 0 < W(s) \quad \forall s \in \mathbb{R} \setminus \{0, 1\}, W''(0)W''(1) > 0;$$

and $g \in C^1(\mathbb{R}^2)$ is a function such that g(1,0) = 1 - m > 0, g(-1,0) = -m < 0. It follows $\int_0^1 f(s) \, ds = 0$.

A typical example of (f, g) is FitzHugh–Nagumo type: f(s) = s(s-a)(1-s), $g(u, v) = u - \gamma v - m$ ($\gamma \ge 0$ is a nonnegative constant). The general case is referred to as the activator-inhibitor system.

The system (2) describes the reaction and the diffusion phenomena of substances. When the ratio of the diffusion constants, ϵ^2 , is extremely small, very interesting stationary patterns, such as stripes or spots, often appear. As

a mathematical approach to understand this pattern formation, we consider the limit $\epsilon \to 0$. Then usually the domain is divided into two regions and the remaining part becomes a thin layer. In some cases, the width of the internal transition layer approaches 0 in the limit, and the discontinuity surface inside the domain, which is called *sharp interface*, appears. Recently very fine layered patterns of (2) have attracted a great deal of attention. See [1, 2, 5, 6, 7, 8]. We consider this fine pattern which has the space scale of $\epsilon^{1/3}$ order. This is the unique scale that the order of the two driving forces of the sharp interface, the inhibitor v and the curvature of the sharp interface, balances; see [1, 5]. After rescaling $x = \frac{y}{\epsilon^{1/3}}$, $t = \epsilon^{4/3}\tau$, and $\varepsilon = \epsilon^{2/3}$, we obtain

$$\begin{cases} u_t = \Delta u + \frac{1}{\varepsilon^2} (f(u) - \mu v), \\ \varepsilon^3 v_t = \Delta v + \varepsilon g(u, v). \end{cases}$$
(3)

We consider the stationary solutions of (3) subject to the homogeneous Neumann boundary condition:

$$\begin{cases} -\varepsilon^2 \Delta u = f(u) - \mu v, & \text{in } \Omega, \\ -\Delta v = \varepsilon g(u, v), & \text{in } \Omega, \\ \frac{\partial u}{\partial n} = \frac{\partial v}{\partial n} = 0, & \text{on } \partial \Omega, \end{cases}$$
(4)

where $\Omega \subset \mathbb{R}^2$ is a bounded domain with the smooth boundary $\partial \Omega$.

The reduced equation in the singular limit $\varepsilon \to 0$ becomes

$$\begin{cases} -\Delta v_1 = \mathbf{1}_{\Omega^+} - m, & \text{in } \Omega, \\ \frac{\partial v_1}{\partial n} = 0, & \text{on } \partial\Omega, \\ \frac{\mu}{\sigma} v_1 + \kappa = 0, & \text{on } \Gamma, \end{cases}$$
(RP)

where Ω^+ is an open set in Ω such that $\Gamma = \partial \Omega^+$ is a curve embedded in Ω ; $\mathbf{1}_{\Omega^+}$ denotes the characteristic function of Ω^+ . Here $u \to \mathbf{1}_{\Omega^+}, v/\varepsilon \to v_1$ as $\varepsilon \to 0$.

The essentially same equation as (RP) was obtained in [6] by using the matched expansion method. Once you have a "non-degenerate" solution of (RP) in some sense, you can find a layered solution for the singular perturbation problem (4) with g(u, v) = u - m and $\mu = 1$. For the reduction from the parabolic system to the sharp interface model, see [12].

The problem (RP) has a variational structure associated with some energy functional. The direct method of calculus of variations implies the existence of global minimizers. This gives a solution of (RP). However it is usually difficult to know the profile and the non-degeneracy of the global minimizers. In this talk, we consider the problem to find a solution of (RP) which does not necessarily correspond to the global minimizers. The radially symmetric case for the related problems is studied in [3, 4, 6, 10, 11, 13]. We do not assume any symmetry of the domain.

In order to state the result, we define the Green's function and its harmonic part.

Definition 1 For each $y \in \Omega$, let G(x, y) be the solution to

$$\begin{cases} -\Delta_x G(x,y) = \delta(x-y) - \frac{1}{|\Omega|}, & x \in \Omega, \\ \frac{\partial G}{\partial n_x}(x,y) = 0, & x \in \partial\Omega, \\ \int_{\Omega} G(x,y) \, dx = 0. \end{cases}$$

Set

$$G(x,y) = -\frac{1}{2\pi} \log |x-y| + \frac{|x-y|^2}{4|\Omega|} + H(x,y), \quad x,y \in \Omega.$$

Then it is known that H(x, y) is symmetric and harmonic in both x and y. Let $\mathcal{H}(x) = H(x, x)$.

We define the following two conditions.

- (A1) $0 \in \Omega$ is a strict local minimum point of \mathcal{H} . More precisely, there exists a neighborhood U of 0 in Ω such that $\mathcal{H}(0) < \mathcal{H}(x)$ for all $x \in U \setminus \{0\}$.
- (A2) $0 \in \Omega$ is a non-degenerate critical point of \mathcal{H} .

We denote by $d_{\rm H}$ Hausdorff metric

$$d_{\rm H}(K_1, K_2) = \max[\sup\{\operatorname{dist}(x, K_2); x \in K_1\}, \sup\{\operatorname{dist}(y, K_1); y \in K_2\}],$$

and $S_r(0) = \{x \in \mathbb{R}; |x| = r\}$. We have the following Theorem.

Theorem 1 Assume that **(A1)** or **(A2)**. If $r_0 := \sqrt{\frac{m|\Omega|}{\pi}} < \text{dist}(0, \partial\Omega)$, then there exists a constant $\beta_0 > 0$ such that (1) has a solution $\Gamma = \Gamma_{\beta}$, $v = v_{\beta}$, $\Omega^+ = \Omega^+_{\beta}$ for all $\beta < \beta_0$ satisfying $d_{\mathrm{H}}(\Gamma_{\beta}, S_{r_0}(0)) \to 0$ as $\beta \to 0$.

In addition, we obtain the non-degeneracy result under (A2).

References

- X. Chen and Y. Oshita, Periodicity and uniqueness of global minimizers of an energy functional containing a long-range interaction, SIAM J. Math. Anal. 37 (2006), no. 4, 1299–1332.
- [2] X. Chen and Y. Oshita, An application of the Modular function in nonlocal variational problems, to appear in Arch. Ration. Mech. Anal.
- [3] X. Chen and M. Taniguchi, Instability of spherical interfaces in a nonlinear free boundary problem, Adv. Differential Equations 5 (2000), no. 4-6, 747– 772.
- [4] M. A. del Pino, Radially symmetric internal layers in a semilinear elliptic system, Trans. Amer. Math. Soc. 347 (1995), no. 12, 4807–4837.
- [5] Y. Nishiura and H. Suzuki, Nonexistence of higher-dimensional stable Turing patterns in the singular limit, SIAM J. Math. Anal. 29 (1998), no. 5, 1087– 1105.
- [6] Y. Nishiura and H. Suzuki, Higher dimensional SLEP equation and applications to morphological stability in polymer problems, SIAM J. Math. Anal. 36 (2004/05), no. 3, 916–966.
- [7] Y. Oshita, On stable nonconstant stationary solutions and mesoscopic patterns for FitzHugh–Nagumo equations in higher dimensions, J. Differential Equations 188 (2003), no. 1, 110–134.
- [8] Y. Oshita, Stable stationary patterns and interfaces arising in reactiondiffusion systems, SIAM J. Math. Anal. 36 (2004), no. 2, 479–497.
- [9] Y. Oshita, Singular limit problem for some elliptic systems, preprint.
- [10] K. Sakamoto and H. Suzuki, Spherically symmetric internal layers for activator-inhibitor systems. I. Existence by a Lyapunov-Schmidt reduction, *J. Differential Equations* **204** (2004), no. 1, 56–92.
- [11] K. Sakamoto and H. Suzuki, Spherically symmetric internal layers for activator-inhibitor systems. II. Stability and symmetry breaking bifurcations, J. Differential Equations 204 (2004), no. 1, 93–122.
- [12] P. Soravia and P. E. Souganidis, Phase-field theory for FitzHugh-Nagumotype systems, SIAM J. Math. Anal. 27 (1996), no. 5, 1341–1359.
- [13] M. Taniguchi, Multiple existence and linear stability of equilibrium balls in a nonlinear free boundary problem, *Quart. Appl. Math.* 58 (2000), no. 2, 283–302.