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We discuss the existence and the asymptotic stability of a stationary solution to
the initial boundary value problem for a one-dimensional heat–conductive hydrody-
namic model for semiconductors. It is given by the system of equations
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φxx = ρ−D, (1d)

for x ∈ Ω := (0, 1). Here, the unknown functions ρ, j, θ and φ stand for electron den-
sity, electric current, absolute temperature and electrostatic potential, respectively.
The positive constants θ̄, κ, τm and τe mean ambient device temperature, thermal
conductivity, momentum relaxation time and energy relaxation time, respectively.
Moreover, the constant ν is equal to (2τe − τm)/τmτe. The pressure p is assumed
that

p = p(ρ, θ) = ρθ. (2)

The doping profile D is a bounded continuous function of the spatial variable x and
satisfy

inf
x∈(0,1)

D(x) > 0. (3)

We prescribe the initial and the boundary data as

(ρ, j, θ)(0, x) = (ρ0, j0, θ0)(x), (4)

ρ(t, 0) = ρl > 0, ρ(t, 1) = ρr > 0, (5)

θ(t, 0) = θl > 0, θ(t, 1) = θr > 0, (6)

φ(t, 0) = 0, φ(t, 1) = φr > 0, (7)

where ρl, ρr, φr, θl and θr are constants. It is also assumed that the initial data
(4) is compatible with the boundary data (5)–(7). Namely, ρ0(0) = ρl, ρ0(1) = ρr,
j0x(0) = j0x(1) = 0, θ0(0) = θl and θ0(1) = θr. We study this problem in the region
where the subsonic condition (8a) and positivity of the density and the temperature
(8b) hold, that is,
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Hence, we need to assume the initial data satisfies this condition:
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θ0(x) > 0. (9)

The subsonic condition implies one characteristic speed of the hyperbolic equations
(1a) and (1b) is negative and another is positive. Namely,

λ1 := u−
√

θ < 0, λ2 := u +
√

θ > 0, (10)

where u := j/ρ stands for velocity of electron flow. Therefore we see that three
boundary conditions (5)–(7) are necessary and sufficient for the well–posedness of
this initial boundary value problem.

The purpose of the present talk is to show the asymptotic stability of a station-
ary solution, which is a solution to (1) independent of time t, satisfying the same
boundary conditions (5)–(7). Hence, the stationary solution (ρ̃,j̃,φ̃) satisfies the
equations

j̃x = 0, (11a)(
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φ̃xx = ρ̃−D. (11d)

with the conditions (5)–(7).
The hydrodynamic model for semiconductors draws a lot of attentions from

mathematicians for these decades. Especially, isentropic model is intensively studied
(see [2, 4, 6]). Among them, the asymptotic stability of the stationary solution was
proved in [3, 7]. On the other hand, the heat-conductive model is not studied so
much, although it is important to handle a hot carrier problem, which is annoying
issue to make the semiconductor devices unstable. The present research studies the
heat-conductive model and shows the global solvability and the asymptotic stability
of the stationary solution, which were open problems under significant settings from
the physical point of view.

The existence of the stationary solution is summarized in the next lemma.

Lemma 1. Let the doping profile and the boundary data satisfy conditions (3) and
(5)–(7). For arbitrary ρl and θ̄, there exits a positive constant δ1 such that if δ :=
|ρr− ρl|+ |θr− θ̄|+ |θl− θ̄|+ |φr| ≤ δ1, then the stationary problem (11) and (5)–(7)
has a unique solution (ρ̃, j̃, θ̃, φ̃) satisfying the conditions (8) in the space B2(Ω).



The proof of the existence of the stationary solution (ρ̃, j̃, φ̃) is given by the
Schauder and the Leray–Schauder fixed point theorems. The uniqueness follows
from the elementary energy method.

We consider the nonstationary problem in the function spaces:

Xj
i ([0, T ]) :=

i⋂

k=0

Ck([0, T ]; Hj+i−k(Ω)), Xi([0, T ]) := X0
i ([0, T ]) for i, j = 0, 1, 2,

Y([0, T ]) := C([0, T ]; H2(Ω)) ∩ C1([0, T ]; L2(Ω)).

The satability theorem of the stationary solution is stated as follows.

Theorem 2. Let (ρ̃, j̃, φ̃) be the stationary solution of (11) and (5)–(7). Suppose that
the initial data (ρ0, j0, θ0) ∈ H2(Ω) and the boundary data ρl, ρr, θl, θr and φr satisfy
(5)–(7), (9) and the compatibility condition. Then there exits a positive constant δ2

such that if δ + ‖(ρ0 − ρ̃, j0 − j̃, θ0 − θ̃)‖2 ≤ δ2, the initial boundary value problem
(1), (4) and (5)–(7) has a unique solution (ρ̃, j, θ, φ) satisfying ρ ∈ X2([0,∞)), j ∈
X1

1([0,∞)), θ ∈ Y([0,∞)) ∩H1
loc(0,∞; H1) and φ ∈ C2([0,∞); H2). Moreover, the

solution (ρ, j, θ, φ) verifies the regularities jtt ∈ L2(0,∞; L2) and φ− φ̃ ∈ X2
2([0,∞))

and the decay estimate

‖(ρ− ρ̃, j − j̃, θ − θ̃)(t)‖2 + ‖(φ− φ̃)(t)‖4 ≤ C‖(ρ0 − ρ̃, j0 − j̃, θ0 − θ̃)‖2e
−αt, (12)

where C and α are positive constants independent of a time variable t.

In the proof of Theorem 2, we first obtain the elliptic estimate, and then we con-
struct the unique existence of the time local solution by using an iteration method.
Next, an energy form is introduced in order to obtain the basic estimate. Moreover,
we apply the energy method to the system of the equations for the perturbation
from the stationary solution to get the higher order estimates. Thus, an a-priori
estimate is obtained. Then the existence of the time global solution follows from
the combination of the existence of the time local solution and the a-priori estimate.
Finally, the decay estimate (12) is shown by the a-priori estimate thus obtained.

For the detailed proof of these results, please see the paper [9].

Notation. For a nonnegative integer l ≥ 0, H l(Ω) denotes the l-th order Sobolev
space in the L2 sense, equipped with the norm ‖ · ‖l. We note H0 = L2 and
‖ · ‖ := ‖ · ‖0. Ck([0, T ]; H l(Ω)) denotes the space of the k-times continuously
differentiable functions on the interval [0, T ] with values in H l(Ω). Hk(0, T ; H l(Ω))
is the space of Hk–functions on (0, T ) with values in H l(Ω). For a nonnegative
integer k ≥ 0, Bk(Ω) denotes the space of the functions whose derivatives up to k-th
order are continuous and bounded over Ω.
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