障害物のある振動方程式の解のミニマイジング・ ムーブメント法による構成

菊地光嗣（静岡大工）

1 Introduction

In［5］M．Schatzman treats a problem which describs movement of a string that hits to an obstacle．This problem is formulated as in the following way．In［5］a slightly general obstacle is considered．However for the sake of simplicity we consider the case that the obstacle is a plane，just like as a table．

Given $u_{0} \in W^{1,2}(0,1)$ and $v_{0} \in L^{2}(0,1)$ with $u_{0} \geq 0$ and $u_{0}(0)=u_{0}(1)=1$ ，we treat a second order hyperbolic differential inequality

$$
\begin{equation*}
u_{t t}-u_{x x} \geq 0 \tag{1}
\end{equation*}
$$

in the sense of distributions and

$$
\begin{equation*}
\operatorname{spt}\left(u_{t t}-u_{x x}\right) \subset\{u=0\} \tag{2}
\end{equation*}
$$

with initial conditions

$$
\begin{equation*}
u(0, x)=u_{0}, \quad \frac{\partial u}{\partial t}(0, x)=v_{0} \tag{3}
\end{equation*}
$$

and a boundary condition
（4）

$$
u(t, 0)=u(t, 1)=1
$$

A weak solution to（1）－（4）is defined as follows：
Definition 1 A function $u:(0, T) \rightarrow L^{2}(0,1)$ is said to be a weak solution to（1）－（4） in $(0, T)$ if
i）$u \in W^{1,2}((0, T) \times(0,1)), \quad u(t, x) \geq 0$ for \mathcal{L}^{2}－a．e．(t, x)
ii）$s-\lim _{t \backslash 0} u(t)=u_{0}$ in $L^{2}(0,1)$
iii）$u(t, 0)=u(t, 1)=1$
iv）for any $\phi \in C_{0}^{0}\left([0, T) ; L^{2}(0,1)\right) \cap W_{0}^{1,2}((0, T) \times(0,1))$ with $\phi \geq 0$ ，

$$
-\int_{0}^{T} \int_{0}^{1} u_{t}(t) \phi_{t}(t) d x d t+\int_{0}^{T} \int_{0}^{1} u_{x} \phi_{x} d x d t-\int_{0}^{1} v_{0} \phi d x \geq 0
$$

v）for any $\phi \in C_{0}^{0}\left([0, T) ; L^{2}(0,1)\right) \cap W_{0}^{1,2}((0, T) \times(0,1))$ with spt $\phi \subset(\{u=0\})^{c}$ ，

$$
-\int_{0}^{T} \int_{0}^{1} u_{t}(t) \phi_{t}(t) d x d t+\int_{0}^{T} \int_{0}^{1} u_{x} \phi_{x} d x d t-\int_{0}^{1} v_{0} \phi d x=0 .
$$

In［5］M．Schatzman solves this equation in a slightly classical way．Moreover unique－ ness is also proved under an assumption that a solution satisfies an equality which assures the energy conservation law．In［3］K．Maruo constructs a solution to this problem by the use of Yosida approximation．The purpose of this talk is to construct a solution to this problem in minimizing movement method．Readers should remark that in general approximation by minimizing movement method is different from Yosida approximation （compare to［1］）．

2 Minimizing movement method

We define a functional $\Phi: L^{2}(0,1) \rightarrow[0, \infty]$ by

$$
\Phi(u)=\left\{\begin{array}{lll}
0 & \text { if } & u(x) \geq 0 \text { for each } x \\
\infty & \text { if } & \text { otherwise }
\end{array}\right.
$$

Put $J(u)=\frac{1}{2} \int_{0}^{1}|\nabla u|^{2} d x+\Phi(u)$ if $u \in W^{1,2}(0,1) \cap D(\Phi)$ with $u(0)=u(1)=1,=\infty$ if otherwise. Note that $u_{0} \in D(J)$. For a positive number h we construct a sequence $\left\{u_{l}\right\}_{l=-1}^{\infty}$ in the following way. For $l=0$ we let u_{0} be as above and for $l=-1$ we set $u_{-1}=u_{0}-h v_{0}$. For $l \geq 1, u_{l}$ is defined as the minimizer of the functional

$$
\mathcal{F}_{l}(u)=\frac{1}{2 h^{2}}\left\|u-2 u_{l-1}+u_{l-2}\right\|^{2}+J(u)
$$

in $D(J)$, namely, in $W^{1,2}(0,1) \cap D(\Phi)$ with $u(0)=u(1)=1$. The existence of the minimizer is assured by lower semicontinuity of J and its boundedness from below. By the use of convexity of J we have

Lemma 1 (Energy inequality)

$$
\frac{1}{2 h^{2}}\left\|u_{l}-u_{l-1}\right\|^{2}+J\left(u_{l}\right) \leq \frac{1}{2}\left\|v_{0}\right\|^{2}+J\left(u_{0}\right) .
$$

Next we define approximate solutions $u^{h}(t)$ and $\bar{u}^{h}(t)$ for $t \in(-h, \infty)$ as follows: for $(l-1) h<t \leq l h$

$$
\begin{equation*}
u^{h}(t, x)=\frac{t-(l-1) h}{h} u_{l}+\frac{l h-t}{h} u_{l-1} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{u}^{h}(t)=u_{l} . \tag{6}
\end{equation*}
$$

Then Lemma 1 shows

$$
\begin{equation*}
\frac{1}{2} \int_{0}^{1}\left|u_{t}^{h}(t)\right|^{2} d x+J\left(\bar{u}^{h}(t)\right) \leq \frac{1}{2} \int_{0}^{1}\left|v_{0}\right|^{2} d x+J\left(u_{0}\right) \tag{7}
\end{equation*}
$$

for each $t \in \bigcup_{l=0}^{\infty}((l-1) h, l h)$.
Proposition 1 It holds that
1). $\left\{\left\|u_{t}^{h}\right\|_{L^{\infty}\left((0, \infty) ; L^{2}(0,1)\right)}\right\}$ is uniformly bounded with respect to h
2). $\left\{\left\|\left(\bar{u}^{h}\right)_{x}\right\|_{L^{\infty}\left((-h, \infty) ; L^{2}(0,1)\right)}\right\}$ is uniformly bounded with respect to h
3). $\bar{u}^{h}(t, x) \geq 0$ for each x and \mathcal{L}^{1}-a.e. t
4). $\left\{\left\|\left(u^{h}\right)_{x}\right\|_{L^{\infty}\left((0, \infty) ; L^{2}(0,1)\right)}\right\}$ is uniformly bounded with respect to h
5). $u^{h}(t, x) \geq 0$ for each x and \mathcal{L}^{1}-a.e. t

Then there exist a sequence $\left\{h_{j}\right\}$ with $h_{j} \rightarrow 0$ as $j \rightarrow \infty$ and a function u such that
4). for any $T>0$, u^{h} converges to u as $j \rightarrow \infty$ weakly star in $L^{\infty}\left((0, T) ; L^{2}(0,1)\right)$
5). u_{t}^{h} converges to u_{t} as $j \rightarrow \infty$ weakly star in $L^{\infty}\left((0, \infty) ; L^{2}(0,1)\right)$
$6)$. $\left(u^{h}\right)_{x}$ converges to u_{x} as $j \rightarrow \infty$ weakly star in $L^{\infty}\left((0, \infty) ; L^{2}(0,1)\right)$
7). for any $T>0, u^{h}$ converges to u as $j \rightarrow \infty$ strongly in $L^{\infty}\left((0, T) ; L^{2}(0,1)\right)$
8). for any $T>0, \bar{u}^{h}$ converges to u as $j \rightarrow \infty$ strongly in $L^{\infty}\left((0, T) ; L^{2}(0,1)\right)$
9). $s-\lim _{t \backslash t_{0}} u(t)=u_{0}$ in $L^{2}(0,1)$.

3 Main Theorem

Our main theorem is as follows:
Theorem 1 The function u as in Proposition 1 is a weak solution to (1)-(4).
Outline of Proof. Since u_{l} is the minimizer of $\mathcal{F}_{l}(v)$, we have $\partial \mathcal{F}_{l}\left(u_{l}\right)=\frac{u_{l}-2 u_{l-1}+u_{l-2}}{h^{2}}+$ $\partial J\left(u_{l}\right) \ni 0$. Since $J(u)=\frac{1}{2} \int_{0}^{1}|\nabla u|^{2} d x+\Phi(u)$, we have $\frac{u_{l}-2 u_{l-1}+u_{l-2}}{h^{2}}-\triangle u_{l}+\partial \Phi\left(u_{l}\right) \ni$ 0 . Namely, noting (5) and (6), we have, for each h,

$$
\begin{equation*}
\Phi\left(\bar{u}^{h}(t)+\phi\right)-\Phi\left(\bar{u}^{h}(t)\right) \geq-\int_{0}^{1} \frac{u_{t}^{h}(t)-u_{t}^{h}(t-h)}{h} \phi(x) d x-\int_{0}^{1} \nabla \bar{u}^{h} \nabla \phi d x \tag{8}
\end{equation*}
$$

for \mathcal{L}^{1}-a.e. $t \in(0, \infty)$. Proposition 1 implies u_{t}^{h} and $\left(\bar{u}^{h}\right)_{x}$ converge weakly star to u_{t} and u_{x}, respectively, in $L^{\infty}\left((0, \infty) ; L^{2}(0,1)\right)$. Thus, if $\phi \geq 0$, since $\Phi\left(\bar{u}^{h}+\phi\right)=\Phi\left(\bar{u}^{h}\right)=0$, (8) implies iv) of the definition of a solution by letting $h \rightarrow 0$.

Lemma 2 Let $\varphi \in L^{2}(0,1)$ and suppose that $\varphi^{\prime} \in L^{2}(0,1)$ and $\varphi(0)=0$. Then $\|\varphi\|_{L^{\infty}(0,1)} \leq \sqrt{2}\|\varphi\|_{L^{2}(0,1)}^{1 / 2}\left\|\varphi^{\prime}\right\|_{L^{2}(0,1)}^{1 / 2}$.

Since we have

$$
\begin{equation*}
u^{h}(t)-u^{h}\left(t^{\prime}\right)=\int_{t^{\prime}}^{t} u_{t}^{h}(s) d s \tag{9}
\end{equation*}
$$

for each $t, t^{\prime} \geq 0$, Proposition 1 1) implies

$$
\begin{equation*}
\left\|u^{h}(t)-u^{h}\left(t^{\prime}\right)\right\|_{L^{2}(0,1)} \leq C\left|t-t^{\prime}\right| \tag{10}
\end{equation*}
$$

where C is independent of h. In the sequel C always denotes a generic constant which is independent of C. By proposition 14) we have

$$
\begin{equation*}
\left\|\left(u^{h}\right)_{x}(t)-\left(u^{h}\right)_{x}\left(t^{\prime}\right)\right\|_{L^{2}(0,1)} \leq C \tag{11}
\end{equation*}
$$

By (10), (11), and Lemma 2 we have

$$
\begin{equation*}
\left\|u^{h}(t)-u^{h}\left(t^{\prime}\right)\right\|_{L^{\infty}(0,1)} \leq C\left|t-t^{\prime}\right|^{1 / 2} \tag{12}
\end{equation*}
$$

This fact implies

$$
\begin{aligned}
\left|u^{h}(t, x)-u^{h}(s, y)\right| & \leq\left|u^{h}(t, x)-u^{h}(t, y)\right|+\left|u^{h}(t, y)-u^{h}(s, y)\right| \\
& =\left|\int_{y}^{x} u_{x}^{h}(t, \xi) d \xi\right|+\left|u^{h}(t, y)-u^{h}(s, y)\right| \\
& \leq\left\|u_{x}^{h}\right\|_{L^{\infty}\left((0, T) ; L^{2}(0,1)\right)}|x-y|^{1 / 2}+C|t-s|^{1 / 2}
\end{aligned}
$$

Thus by Proposition 14$) u^{h}$ is equicontinuous in $(0, T) \times(0,1)$ with respect to h. Furthermore, letting $s=0$ and $y=0$, we find $\left\{u^{h}\right\}$ is uniformly bounded in $L^{\infty}((0, T) \times(0,1))$. Hereby we have by Ascoli-Arzela theorem that, passing to a further subsequence if necessary, $\left\{u^{h}\right\}$ converges uniformly in $(0, T) \times(0,1)$ to u. Let $\phi \in C_{0}^{0}\left([0, T) ; L^{2}(0,1)\right) \cap$ $W_{0}^{1,2}((0, T) \times(0,1))$ satisfy spt $\phi \subset(\{u=0\})^{c}=\{u>0\}$. Here remark that u is continuous with respect to t and x. Thus there should be a positive constant σ such that $u \geq \sigma$ in spt ϕ. We may suppose that sup $|\phi| \leq \sigma$. Since $u^{h}(t, x)$ converges uniformly to $u(t, x)$, $\left|u(t, x)-u^{h}(t, x)\right|<\frac{1}{2} \sigma$ if h is sufficiently small. Thus we have

$$
u^{h}+\phi=u+\phi+u^{h}-u \geq u-|\phi|-\left|u-u^{h}\right| \geq \sigma-\frac{1}{2} \sigma-\frac{1}{2} \sigma=0 .
$$

Hence $u^{h}+\phi \geq 0$ in $(0, T) \times(0,1)$. Noting that $\bar{u}^{h}(t, x)=u^{h}(l h, x)$ for $(l-1) h<t \leq l h$, we find $\bar{u}^{h}+\phi \geq 0$ in $(0, T) \times(0,1)$. Hence (8) implies

$$
0=\Phi\left(\bar{u}^{h}+\phi\right)-\Phi\left(\bar{u}^{h}\right) \geq-\int_{0}^{1} \frac{u_{t}^{h}(t)-u_{t}^{h}(t-h)}{h} \phi(t, x) d x-\int_{0}^{1}\left(\bar{u}^{h}\right)_{x} \phi_{x} d x
$$

for \mathcal{L}^{1}-a.e. t. Replacing ϕ with $-\phi$ we have the converse inequality and thus, for \mathcal{L}^{1}-a.e. t,

$$
-\int_{0}^{1} \frac{u_{t}^{h}(t)-u_{t}^{h}(t-h)}{h} \phi(t, x) d x-\int_{0}^{1}\left(\bar{u}^{h}\right)_{x} \phi_{x} d x=0 .
$$

Integrating over ($0, T$) and letting $h \rightarrow 0$, we have v) of the definition of a solution.

References

[1] K. Kikuchi, Minimizing movement method for second order hyperbolic equations, Seminar Notes of Math. Sci., Ibaraki Univ., vol. 9, 2006, pp. 72-80.
[2] K. Maruo, Existence of solutions of some nonlinear wave equation, Osaka J. Math. 22 (1985), 21-30.
[3] _ On certain nonlinear differential equations of second order in time, Osaka J. Math. 23 (1986), 1-53.
[4] T. Nagasawa, Discrete Morse semiflows and evolution equations, Proceedings of the 16th Young Japanese Mathematicians' Seminar on Evolution Equations, 1994, in Japanese, pp. 1-20.
[5] M. Schatzman, Le système différentiel $\left(d^{2} u / d t^{2}\right)+\partial \phi \ni f$ avec conditions initiales, C. R. Acad. Sc. Paris 284 (1977), A603-A606.

