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1 Introduction

In [5] M. Schatzman treats a problem which describs movement of a string that hits to
an obstacle. This problem is formulated as in the following way. In [5] a slightly general
obstacle is considered. However for the sake of simplicity we consider the case that the
obstacle is a plane, just like as a table.

Given u0 ∈ W 1,2(0, 1) and v0 ∈ L2(0, 1) with u0 ≥ 0 and u0(0) = u0(1) = 1, we treat
a second order hyperbolic differential inequality

utt − uxx ≥ 0(1)

in the sense of distributions and

spt (utt − uxx) ⊂ {u = 0}(2)

with initial conditions

u(0, x) = u0,
∂u

∂t
(0, x) = v0(3)

and a boundary condition
u(t, 0) = u(t, 1) = 1.(4)

A weak solution to (1)–(4) is defined as follows:

Definition 1 A function u : (0, T ) → L2(0, 1) is said to be a weak solution to (1)–(4)
in (0, T ) if

i) u ∈ W 1,2((0, T ) × (0, 1)), u(t, x) ≥ 0 for L2-a.e. (t, x)

ii) s-lim
t↘0

u(t) = u0 in L2(0, 1)

iii) u(t, 0) = u(t, 1) = 1

iv) for any φ ∈ C0
0([0, T ); L2(0, 1)) ∩ W 1,2

0 ((0, T ) × (0, 1)) with φ ≥ 0,

−
∫ T

0

∫ 1

0
ut(t)φt(t)dxdt +

∫ T

0

∫ 1

0
uxφxdxdt −

∫ 1

0
v0φdx ≥ 0.

v) for any φ ∈ C0
0([0, T ); L2(0, 1)) ∩ W 1,2

0 ((0, T ) × (0, 1)) with spt φ ⊂ ({u = 0})c,

−
∫ T

0

∫ 1

0
ut(t)φt(t)dxdt +

∫ T

0

∫ 1

0
uxφxdxdt −

∫ 1

0
v0φdx = 0.

In [5] M. Schatzman solves this equation in a slightly classical way. Moreover unique-
ness is also proved under an assumption that a solution satisfies an equality which assures
the energy conservation law. In [3] K. Maruo constructs a solution to this problem by
the use of Yosida approximation. The purpose of this talk is to construct a solution to
this problem in minimizing movement method. Readers should remark that in general
approximation by minimizing movement method is different from Yosida approximation
(compare to [1]).
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2 Minimizing movement method

We define a functional Φ : L2(0, 1) → [0,∞] by

Φ(u) =

{
0 if u(x) ≥ 0 for each x
∞ if otherwise.

Put J(u) = 1
2

∫ 1
0 |∇u|2dx + Φ(u) if u ∈ W 1,2(0, 1) ∩ D(Φ) with u(0) = u(1) = 1, = ∞

if otherwise. Note that u0 ∈ D(J). For a positive number h we construct a sequence
{ul}∞l=−1 in the following way. For l = 0 we let u0 be as above and for l = −1 we set
u−1 = u0 − hv0. For l ≥ 1, ul is defined as the minimizer of the functional

Fl(u) =
1

2h2
‖u − 2ul−1 + ul−2‖2 + J(u)

in D(J), namely, in W 1,2(0, 1) ∩ D(Φ) with u(0) = u(1) = 1. The existence of the
minimizer is assured by lower semicontinuity of J and its boundedness from below. By
the use of convexity of J we have

Lemma 1 (Energy inequality)

1

2h2
‖ul − ul−1‖2 + J(ul) ≤

1

2
‖v0‖2 + J(u0).

Next we define approximate solutions uh(t) and uh(t) for t ∈ (−h,∞) as follows: for
(l − 1)h < t ≤ lh

uh(t, x) =
t − (l − 1)h

h
ul +

lh − t

h
ul−1(5)

and
uh(t) = ul.(6)

Then Lemma 1 shows

1

2

∫ 1

0
|uh

t (t)|2dx + J(uh(t)) ≤ 1

2

∫ 1

0
|v0|2dx + J(u0)(7)

for each t ∈
∞∪
l=0

((l − 1)h, lh).

Proposition 1 It holds that

1). {‖uh
t ‖L∞((0,∞);L2(0,1))} is uniformly bounded with respect to h

2). {‖(uh)x‖L∞((−h,∞);L2(0,1))} is uniformly bounded with respect to h

3). uh(t, x) ≥ 0 for each x and L1-a.e. t

4). {‖(uh)x‖L∞((0,∞);L2(0,1))} is uniformly bounded with respect to h

5). uh(t, x) ≥ 0 for each x and L1-a.e. t
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Then there exist a sequence {hj} with hj → 0 as j → ∞ and a function u such that

4). for any T > 0, uh converges to u as j → ∞ weakly star in L∞((0, T ); L2(0, 1))

5). uh
t converges to ut as j → ∞ weakly star in L∞((0,∞); L2(0, 1))

6). (uh)x converges to ux as j → ∞ weakly star in L∞((0,∞); L2(0, 1))

7). for any T > 0, uh converges to u as j → ∞ strongly in L∞((0, T ); L2(0, 1))

8). for any T > 0, uh converges to u as j → ∞ strongly in L∞((0, T ); L2(0, 1))

9). s- lim
t↘t0

u(t) = u0 in L2(0, 1).

3 Main Theorem

Our main theorem is as follows:

Theorem 1 The function u as in Proposition 1 is a weak solution to (1)–(4).

Outline of Proof. Since ul is the minimizer of Fl(v), we have ∂Fl(ul) =
ul − 2ul−1 + ul−2

h2
+

∂J(ul) 3 0. Since J(u) = 1
2

∫ 1
0 |∇u|2dx+Φ(u), we have

ul − 2ul−1 + ul−2

h2
−4ul+∂Φ(ul) 3

0. Namely, noting (5) and (6), we have, for each h,

Φ(uh(t) + φ) − Φ(uh(t)) ≥ −
∫ 1

0

uh
t (t) − uh

t (t − h)

h
φ(x)dx −

∫ 1

0
∇uh∇φdx(8)

for L1-a.e. t ∈ (0,∞). Proposition 1 implies uh
t and (uh)x converge weakly star to ut and

ux, respectively, in L∞((0,∞); L2(0, 1)). Thus, if φ ≥ 0, since Φ(uh +φ) = Φ(uh) = 0, (8)
implies iv) of the definition of a solution by letting h → 0.

Lemma 2 Let ϕ ∈ L2(0, 1) and suppose that ϕ′ ∈ L2(0, 1) and ϕ(0) = 0. Then

‖ϕ‖L∞(0,1) ≤
√

2‖ϕ‖1/2
L2(0,1)‖ϕ′‖1/2

L2(0,1).

Since we have

uh(t) − uh(t′) =
∫ t

t′
uh

t (s)ds,(9)

for each t, t′ ≥ 0, Proposition 1 1) implies

‖uh(t) − uh(t′)‖L2(0,1) ≤ C|t − t′|,(10)

where C is independent of h. In the sequel C always denotes a generic constant which is
independent of C. By proposition 1 4) we have

‖(uh)x(t) − (uh)x(t
′)‖L2(0,1) ≤ C(11)

By (10), (11), and Lemma 2 we have

‖uh(t) − uh(t′)‖L∞(0,1) ≤ C|t − t′|1/2.(12)
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This fact implies

|uh(t, x) − uh(s, y)| ≤ |uh(t, x) − uh(t, y)| + |uh(t, y) − uh(s, y)|

= |
∫ x

y
uh

x(t, ξ)dξ| + |uh(t, y) − uh(s, y)|

≤ ‖uh
x‖L∞((0,T );L2(0,1))|x − y|1/2 + C|t − s|1/2

Thus by Proposition 1 4) uh is equicontinuous in (0, T )×(0, 1) with respect to h. Further-
more, letting s = 0 and y = 0, we find {uh} is uniformly bounded in L∞((0, T ) × (0, 1)).
Hereby we have by Ascoli-Arzela theorem that, passing to a further subsequence if nec-
essary, {uh} converges uniformly in (0, T ) × (0, 1) to u. Let φ ∈ C0

0([0, T ); L2(0, 1)) ∩
W 1,2

0 ((0, T ) × (0, 1)) satisfy spt φ ⊂ ({u = 0})c = {u > 0}. Here remark that u is contin-
uous with respect to t and x. Thus there should be a positive constant σ such that u ≥ σ
in spt φ. We may suppose that sup |φ| ≤ σ. Since uh(t, x) converges uniformly to u(t, x),

|u(t, x) − uh(t, x)| <
1

2
σ if h is sufficiently small. Thus we have

uh + φ = u + φ + uh − u ≥ u − |φ| − |u − uh| ≥ σ − 1

2
σ − 1

2
σ = 0.

Hence uh + φ ≥ 0 in (0, T )× (0, 1). Noting that uh(t, x) = uh(lh, x) for (l − 1)h < t ≤ lh,
we find uh + φ ≥ 0 in (0, T ) × (0, 1). Hence (8) implies

0 = Φ(uh + φ) − Φ(uh) ≥ −
∫ 1

0

uh
t (t) − uh

t (t − h)

h
φ(t, x)dx −

∫ 1

0
(uh)xφxdx

for L1-a.e. t. Replacing φ with −φ we have the converse inequality and thus, for L1-a.e.
t,

−
∫ 1

0

uh
t (t) − uh

t (t − h)

h
φ(t, x)dx −

∫ 1

0
(uh)xφxdx = 0.

Integrating over (0, T ) and letting h → 0, we have v) of the definition of a solution.
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