
１次元非線形 KLEIN-GORDON 方程式系の散乱問題

林　仲夫

We consider the Cauchy problem for the system of semi-linear Klein-Gordon
equations { (

∂2
t − ∂2

x + m2
j

)
uj = Nj (∂u) , (t, x) ∈ R × R,

uj (0, x) =
◦
u

(1)

j (x) , ∂tuj (0, x) =
◦
u

(2)

j (x) , x ∈ R,
(0.1)

where j = 1, ..., l, mj > 0, the partial derivative ∂ = (∂t, ∂x) and u = (u1, ..., ul).
We assume that Nj (∂u) are quadratic nonlinearities. Our purpose is to prove global
existence of small solutions and to consider a scattering problem for equation (0.1)
under the strong null condition on the nonlinearities Nj introduced by [3] which is
written as

Nj (∂u) =
l∑

p,q=1

Ajpq ((∂tup) ∂xuq − (∂xup) ∂tuq)(0.2)

where Ajpq ∈ C. Condition (0.2) implies an additional time decay of order t−1

through the operator Z = x∂t + t∂x since

((∂tup) ∂xuq − (∂xup) ∂tuq) =
1
t

((∂tup)Zuq − (Zup) ∂tuq) .

However we encounter the derivative loss with respect to the operator Z. To over-
come the derivative loss we use an analytic function space including the operator
Z. The operator Z was used previously by Klainerman [7] to prove global existence
theorem for the nonlinear Klein-Gordon equations with quadratic nonlinearities in
three space dimensions (see also papers [1], [3], [4], [6], [8], [9]). Global existence of
small solutions to cubic nonlinear Klein-Gordon equations in one space dimension
was studied extensively. Non resonance cubic nonlinearities were studied in [6] for
a single equation and in [9] for a system of equations with different masses. In
[2], [5], [10], resonance cubic nonlinearities were treated. For the case of quadratic
nonlinearities there are few results. In paper [8], it was studied an almost global
existence of small solutions to semi-linear Klein-Gordon equations for a single case.
As far as we know there are no global results for a system of nonlinear Klein-Gordon
equations in the case of quadratic nonlinearities.

In order to explain the analytic function space used in this paper we now state
the notations. Let Lp be the usual Lebesgue space with the norm ‖φ‖Lp =(∫

R
|φ (x)|p dx

) 1
p if 1 ≤ p < ∞ and ‖φ‖L∞ = supx∈R |φ (x)| if p = ∞. Sobolev

space is

Hm
p =

⎧⎨
⎩φ ∈ Lp : ‖φ‖Hm

p
≡

m∑
j=0

∥∥∂j
xφ

∥∥
Lp < ∞

⎫⎬
⎭ ,
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where m ∈ N, 1 ≤ p ≤ ∞. We also write Hm = Hm
2 for simplicity. We let

Q = (∂t, ∂x,Z) , P = (x, ∂x, ∂t,Y ,Z) , Y = x∂x + t∂t, Z = x∂t + t∂x

and

Xn =

⎧⎨
⎩φ ∈ L2 : ‖φ‖Xn

=
∑
|α|≤n

‖Qαφ‖L2 < ∞
⎫⎬
⎭ , n ∈ N.

We use the same notations for vector-functions, for example we write ‖f‖Hm
p

=∑l
j=1 ‖fj‖Hm

p
for a vector f = (f1, ..., fl). Different positive constants we denote

by the same letter C. We define an analytic function space as follows:

GA (A;X) =

⎧⎨
⎩f ∈ X; ‖f‖GA(A;X) =

∑
α≥0

Aα

α!
‖Aαf‖X < ∞

⎫⎬
⎭ ,

where A= (A1, ..., AN ) , Aj > 0, A = (A1, ...,AN ) , α! =
∏N

j=1 αj !, |α| =
∑N

j=1 αj ,
α ≥ 0 means that αj ≥ 0 for 1 ≤ j ≤ N, and X is a Banach space. It is easy to see
that

GA1...AN (A1,A2, ...,AN ;X) = GA2...AN
(A2, ...,AN ;GA1 (A1;X)

)
.

Our basic analytic function space is Ga
(
∂t, ∂x,Z;L2

)
, a = (a1, a2, a3) . To prove a-

priori estimate of solutions in the neighborhood of t = 0 in the class Ga
(
∂t, ∂x,Z;L2

)
we need to show for some small T

sup
t∈[0,T ]

‖u (t)‖Ga(∂t,∂x,x∂t;L2) < ∞.

Since ∂t is equivalent to
√

m2
j − ∂2

x in the linear case, so this estimate is naturally
related with a-priori estimate

sup
t∈[0,T ]

‖u (t)‖Ga(x,∂x,x∂x;L2) < ∞.

First we state the local existence result. Denote B = (x, ∂x,Y) .

Theorem 0.1. Assume that for some constant vector A = (A1, A2, A3) with A1, A2 >
0, 0 < A3 < 1 the norms∥∥∥∥◦

u
(1)

j

∥∥∥∥
GA(x,∂x,x∂x;H2)

+
∥∥∥∥◦
u

(2)

j

∥∥∥∥
GA(x,∂x,x∂x;H1)

< ∞.

Then for some T > 0 (which depends on the size of the initial data) there exists a
unique solution of (0.1) which satisfies the estimates

sup
0≤t≤T

(
‖u (t)‖GA(B;H2) + ‖∂tu (t)‖GA(B;H1)

)
< ∞.

Moreover for some constant vector a the solution satisfies the estimate

sup
0≤t≤T

‖u (t)‖Ga(P;H2) < ∞.

Remark 0.1. Typical example of the initial function is given by ε exp
(−x2

)
which

decays exponentially at infinity and has an analytic continuation on the strip and
on the sector. Therefore exp

(−x2
) ∈ GA

(
x, ∂x, x∂x;H2

)
.

We now state a global existence and asymptotics of solutions.
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Theorem 0.2. Assume that for some constant vector A = (A1, A2, A3) with A1, A2 >
0, 0 < A3 < 1 the norms∥∥∥∥◦

u
(1)

j

∥∥∥∥
GA(x,∂x,x∂x;H2)

+
∥∥∥∥◦
u

(2)

j

∥∥∥∥
GA(x,∂x,x∂x;H1)

< ε

with some small ε > 0. Furthermore suppose that the strong null condition (0.2) is
fulfilled. Then the Cauchy problem (0.1) has a unique global solution u such that

uj ∈ C ([0,∞) ;Ga (Q;X5))

and

‖u (t)‖Ga(∂x;L∞) ≤ C 〈t〉− 1
2

for all t ≥ 0, where a = (a, a, a) , a > 0 is a small positive constant depending
on A, ε. Furthermore there exists a unique final state u

+(1)
j , u

+(2)
j ∈ Ga

(
∂x;L2

)
satisfying

∥∥∥∥∥∥uj (t) −
⎛
⎝cos

(
t
√

m2
j − ∂2

x

)
u

+(1)
j +

sin
(
t
√

m2
j − ∂2

x

)
√

m2
j − ∂2

x

u
+(2)
j

⎞
⎠

∥∥∥∥∥∥
Ga(∂x;L2)

≤ Cε2 〈t〉− 1
2

for all t ≥ 0, 1 ≤ j ≤ l.
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