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1. Introduction.

Let © be an exterior domain in R? with a compact C?-boundary 9. Without
loss of generality we may assume (0,0) ¢ Q. In this paper, we will consider the
Cauchy-Dirichlet problem for the wave equation. For a function v = u(¢, ) defined
for (t,z) € (0,00) x Q, we study the following initial-boundary value problem for
the wave equation:

u(t, ) — Au(t,x) =0 in  (0,00) x €, (1.1)
u(t,z) =0 on (0,00) x 09, (1.2)
u(t,z) = ug, u(t,x) =u; on {t=0}xQ.

Throughout this paper, we use the usual notations. For f,g € L*(Q),

(£.9) = [ f@g(@)dz. | fllz@ = V(£ 5)

and we let xq to be the characteristic function of €2. Furthermore, the total energy

E(t) is defined as

B(t) = 5 {IIVult, e + et Yoo} (14)

Let R > 0 be an arbitrary real number so that Q2 C Bg(0) = {z € R?|z| < R}.
Then, the local energy is defined as

1

Eqr(t) = 2 Ja

| {IVu(t, o) + |uy(t, )|} da, (1.5)
where we set Q(R) = Q N Bgr(0). We are concerned with a decay estimate of the
local energy for a solution to (1.1), (1.2) and (1.3). We have some results on a decay
of a local energy for the wave equations. For instance, we refer to [1], [4], [5], [7],
8], [9]. In particular, the results in [4], [5], [8] are much related to our interest in
this paper.

First we show the unique existence of a weak solution in C([0,00); H}(Q)) N
C1([0,00); L*(€2)) to (1.1), (1.2) and (1.3) defined in the following. We can treat the
higher dimension case that 2 € R", n > 2. In this occasion, we shallproceed our
argument based on the energy identity.



Theorem 1.1 For each (ug,ui) € HE(Q2) x L*(Q), there exists a unique solution
u € C([0,00); HH(Q)) N C([0,00); L2(2)) to the problem (1.1), (1.2) and (1.3) such

that
1

1 1
§||Vu(t, M2 + §Hut(t, M = §||VU0||%2(Q) + 5”“1”%2(9)' (1.6)

For the proof see [2]

2. Main Theorem.

We now state our main theorem on the estimate in L? of a weak solution to (1.1),
(1.2) and (1.3) in the two space dimension case, Q C R?. The key point is that we
choose the initial data u; to be in the Hardy space, xyou; € H'(R?) (refer to [4],

[5])-
First we give the definition of function spaces needed for our main theorem (refer
to [3]).

Definition 2.1 (Hardy space) The Hardy space consists of functions f in L'(R™)
such that

n)y — T‘* d
1f 7t ey /Rniﬂ%;‘“? f()|dz

is finite, where ¢.(x) = r"¢(r~1z) forr > 0 and ¢ is a smooth function on R™ with
compact support in an unit ball with center of the origin B1(0) = {x € R"; |z| < 1}.

We know that the definition dose not depend on choice of a function ¢.

Definition 2.2 (functions of bounded mean oscillation) Let f be a locally
integrable in R™, denoted by f € L. _.(R™). We say that f is of bounded mean

loc

oscillation (abbreviated as BMO) if

1
»= SIp = ~ (f)pldz <
| fll Bmo®r) ;éll:rgn ’B|/B|f(x) (f)pldz < oo,

where the supremum ranges over all finite ball B C R™, |B| is the n-dimensional
Lebesgue measure of B, and (f)p denotes the mean value of f over B, namely

(o = & [ flw)de.
The class of functions of BMQO, modulo constants, is a Banach space with the
norm || - ||gmo defined above.

Our main theorem is the following:

Theorem 2.3 Suppose that the initial data (ug,u;) belongs to HY(2) x £*(Q) and
further satisfies || xqui|l1(r2) < +00. Then, the solution u to the problem (1.1),
(1.2) and (1.3) satisfies

[u(t, ) 720) < NuollZ2ia) + Clixau 3 re (2.1)

for all t > 0 with a certain constant C' > 0.
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We shall prepare the decisive Fefferman-Stein inequality, which means the duality
between H!'(R") and BMO(R"), (H'(R"))* = BMO(R™). For the proof, see [3].

Theorem 2.4 (Fefferman-Stein inequality) There is a positive constant C de-
pending only on n such that if f € H'(R™) and g € BMO(R"), then

’/ x)dx

Theorem 2.5 Assume that OS2 is star-shaped with respect to the origin. Let R > 0
be arbitrarily fized such that 9Q C Br(0). Then, for each (ug,u;) € Hi(Q2) x L*(2)
with suppug U suppu; C Q(R) and further satisfies || xou1 | (r2) < +00, the weak
solution u(t,x) constructed in Theorem 1.1 to (1.1), (1.2) and (1.3) satisfies

Eon(t) < CE(O)(t — R)™ (2:2)

< C||f||H1(Rn ||9||BMO (R™)-

for allt < R, where the positive constant C' depends only on the initial data (ug, uy).

As is well known, the finite propagation property of the wave equation implies
that if the initial data (ug,u1) € Hg(Q2) x L*(Q)) has a compact support, that is,
suppug U suppu; C Q(R), then we have

suppu(t,-) C Q(R +t) (2.3)

for each t > 0.
For the proof see [5]

3. Dissipative wave equation.

Our final result is concerned with the decay of solutions for the following dissi-
pative wave equation :

u(t, ) — Au(t, ) +w(t,xz) =0  in  (0,00) X £, (3.1)
u(t,z) =0 on (0,00) x 09, (3.2)
u(t,z) = ug, w(t,x) =u on {t=0}xQ. (3.3)

To state the result, we need the well-posedness of the problem (3.1), (3.2) and
(3.3).

Theorem 3.1 For each (ug,u;) € H}() x L*(Q), there exists a unique solution
u € C([0,00); HY(Q)) N C([0,00); L2(2)) to the problem (3.1), (3.2) and (3.3) such
that

1
§||VU,(t,')||%2( *||Ut( Wiz +/ [ug(s, 1720y ds
1 1
= §HVU0H2Lz(Q) + §’|U1HL2(Q)7 (3.4)
d
%(Ut(ﬂ D u(t, ) + [Vult, M Zaq) + (welt, ), ult, ) = llue(t, )72 (3.5)



Theorem 3.2 Suppose that the initial data (ug,u,) belongs to HY () x L*(Q) and
further satisfies || xo(uo + w1)|m(r2)y < +00. Then, the solution u to the problem
(3.1), (3.2) and (3.3) satisfies

(T+O)llult, iz < C{lluollzn + lullZz@ + Ixa(uo + u)lfagme}  (3.6)

for all t > 0 with a constant C' > 0 independent of t € [0, 00).
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