Gierer－Meinhardt 系における点凝集現象と飽和効果

首都大学東京 理工学研究科

森本 光太郎 ${ }^{1}$

In this talk，we are concerned with peak solutions（point－condensation solutions） to the following one－dimensional Gierer－Meinhardt system with saturation which is a model equation of the activator and the inhibitor in the biological pattern formation：

$$
\left\{\begin{array}{l}
0=\varepsilon^{2} A^{\prime \prime}-A+\frac{A^{2}}{H\left(1+\kappa A^{2}\right)}, A>0, x \in(-1,1) \tag{GM}\\
0=D H^{\prime \prime}-H+A^{2}, H>0, x \in(-1,1) \\
A^{\prime}(\pm 1)=H^{\prime}(\pm 1)=0
\end{array}\right.
$$

where $\varepsilon, D>0, \kappa \geq 0$ ．ε and D are the diffusion constants of the activator and the inhibitor，respectively．The saturation effect of the activator is given by the parameter κ ．When $\kappa=0$（no saturation case），it is well－known that（GM）has a solution which concentrates at a finite number of points on $\bar{\Omega}$ for sufficiently small ε and large D ．We call such a solution a peak solution．However，it is not trivial whether（GM）has a peak solution even if $\kappa>0$ ．We will give a sufficient condition of κ for which point－condensation phenomena emerge．

We assume the following：
（A）$\kappa \geq 0$ depends on ε ，and there exists a limit $\kappa \varepsilon^{-2} \rightarrow \kappa_{0}$ as $\varepsilon \rightarrow 0$ for some $\kappa_{0} \in[0, \infty)$ ．

Theorem 1．Fix $D>0$ arbitrarily．Assume（A）and that the value $\kappa_{0} \alpha_{D}^{2}$ is sufficiently small（ α_{D} is defined below）．Then，for sufficiently small ε ，（GM）admits a 1－peak symmetric solution $\left(A_{\varepsilon}(x), H_{\varepsilon}(x)\right)$ such that $A_{\varepsilon}(x)$ concentrates at $x=0$ ． More precisely，there exists $\delta_{\varepsilon} \geq 0$ for each ε such that $\delta_{\varepsilon} \rightarrow \delta_{0}$ as $\varepsilon \rightarrow 0$ for certain $\delta_{0} \geq 0$ which is decided by D and κ_{0} and satisfies

$$
\delta_{0}\left(\int_{\mathbb{R}} w_{\delta_{0}}^{2}\right)^{2}=\kappa_{0} \alpha_{D}^{2}, \alpha_{D}:=\frac{\sinh (2 \theta)}{\theta \cosh ^{2} \theta}, \theta:=D^{-1 / 2}
$$

A_{ε} takes the form

$$
\begin{equation*}
A_{\varepsilon}(x)=\frac{\alpha}{\varepsilon \int_{\mathbb{R}} w_{\delta_{\varepsilon}}^{2}}\left\{w_{\delta_{\varepsilon}}\left(\frac{x}{\varepsilon}\right)+O(\varepsilon)\right\}, x \in(-1,1) \tag{1}
\end{equation*}
$$

as $\varepsilon \rightarrow 0$ ，where the term $O(\varepsilon)$ is uniform in x ，and w_{δ} is a unique solution to the following problem：

$$
\left\{\begin{array}{l}
w^{\prime \prime}-w+\frac{w^{2}}{1+\delta w^{2}}=0, w>0, \text { in } \mathbb{R} \tag{2}\\
w(0)=\max _{y \in \mathbb{R}} w(y), w(y) \rightarrow 0 \text { as }|y| \rightarrow \infty
\end{array}\right.
$$

Remark 1．It is known that，there exists $\delta_{*}>0$ ，and（2）has a unique symmetric solution w_{δ} for any $\delta \in\left[0, \delta_{*}\right)$ ．Moreover，w_{δ} has the following properties：
（i）$w_{\delta}^{\prime}(x)<0$ for $x>0$ ．
（ii）For some $C, c>0$ ，it holds that

$$
w_{\delta}(x),\left|w_{\delta}^{\prime}(x)\right|,\left|w_{\delta}^{\prime \prime}(x)\right| \leq C e^{-c|x|}, x \in \mathbb{R} .
$$

[^0]
[^0]: ${ }^{1}$ Supported by Research Fellowships of Japan Society for the Promotion of Sci－ ence for Young Scientists．

